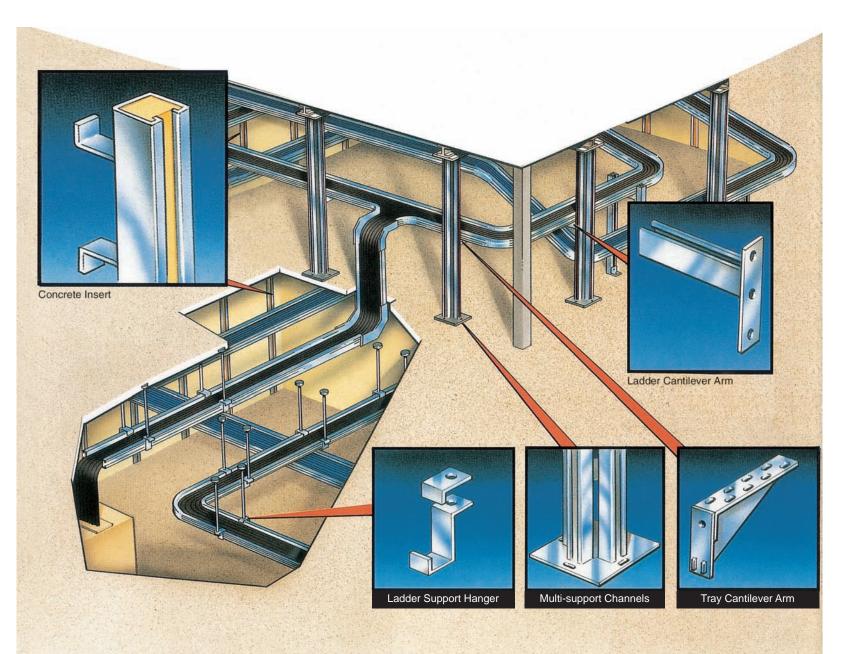


Oil & Gas, Infrastructure and Building Applications



M*RAK is a comprehensive range of high quality Cable Support System designed specifically to satisfy the demanding needs of the Oil, Gas and Power industries. M*RAK is also being used in high quality industrial and building projects.

M*RAK Cable Support System, established in the 1990s, is manufactured according to ISO 9001 quality system for supply to primarily the oil and gas and power generation industries.

The M*RAK design is aimed at servicing quality conscious markets. Materials are available in Stainless 304, 316, 316L, Carbon Steel with Hot Dipped Galvanised or Powder Coating finish and non-ferrous materials like FRP and Aluminium. M*RAK system of cable support includes strut channels, concrete insert, cantilever arms, trapeze and brackets.

We emphasize on quality products and services, using only reliable raw materials and metal fittings on all our products. We practise stringent quality control at every stage of production, guaranteed to meet your specification and requirement and work closely with engineers and consultants to determine the most suitable system for installation.

In addition to being the first cable support system manufacturer in Malaysia to be awarded the ISO 9001, we are also the first to be accredited with ISO 9001 : 2000 certification.

A Family of Quality

We are equipped with state-ofthe-art machinery and testing equipment. We roll form 6M long ladders in various profiles and our robotic welding produces high quality welding in high speed production to meet high demand of quality and delivery.

We take pride of our quality. We have spectrometer to check all incoming materials, stringent QC and total quality management.

Robotic Welding

Load Data

Choosing Your Cable Support Systems

Cable Tray Perforated Type

Solid and rigid, good choice for carrying smaller and dedicated cables. Weight is a concern when tray size becomes bigger.

Cable Ladder

Versatile, lighter and easy to install. Wide range of load capacity profile.

Cable Trunking

Totally enclosed, generally used indoors.

Choose a Cable Support System by your required cable load and designed support span.

NEMA Standard Classification in Table 1 shows the minimum working load with 1.5 safety factor.

Choice of Cable Support material shall be determined by the application environment; corrosion resistance and price are facts for consideration.

Cable Support Systems are meant for supporting cables, not used as walkways.

Span Length								
(Clear Span)								
Working Load Lbs/ft (kg/m)			oort Span eet (m)	Class Designation Per 3.1				
50	(74.4)	8	(2.44)	8A				
75	(111.6)	8	(2.44)	8B				
100	(148.8)	8	(2.44)	8C				
50	(74.4)	12	(3.66)	12A				
75	(111.6)	12	(3.66)	12B				
100	(148.8)	12	(3.86)	12C				
50	(74.4)	16	(4.87)	16A				
75	(111.5)	16	4.87)	16B				
100	(148.8)	16	(4.87)	16C				
50	(74.4)	20	(6.09)	20A				
75	(111.6)	20	(6.09)	20B				
100	(148.8)	20	(6.09)	20C				

Uniformly Distributed Loads

Table 1

Side Rail Height	NEMA	8A	8B	8C	12A	12B	12C	16A	16B	16C	20A	20B	2
38mm		FB38	FB38	FB38									
50mm		FB50 HRF50	FB50	FB50									
75mm		CPL75	HRF50 CPL75	HRF50									
7.011111		C175	C175										
		HL75	HL75	HL75									
		FB75	FB75	FB75									
100mm		CPL100	CPL100	CPL100	CPL100								
		CI100	CI100	CI100	CI100								
		CT100 HRF100	CT100 HRF100	CT100 HRF100	CT100								
		HL100	HL100	HL100	HL100	HL100	HL100						
		TIETOO	TIE 100	112100		112100	TIE 100						
125mm		CPL125	CPL125	CPL125	CPL125	CPL125	CPL125						
		CI125	CI125	CI125	CI125	CI125	CI125						
		CT125 HL125	CT125 HL125	CT125 HL125	CT125 HL125	CT125 HL125	CT125 HL125	HL125	HL125	HL125	HL125	HL125	
		HL120		HL120	IL 125	FIL 120	TL120	HL120		HL120	HL 120	HL120	
150mm		CPL150	CPL150	CPL150	CPL150	CPL150	CPL150	CPL150	CPL150	CPL150	CPL150		
		CI150	CI150	CI150	CI150	CI150	CI150	CI150	CI150	CI150	CI150		
		CT150	CT150	CT150	CT150	CT150	CT150	CT150	CT150	CT150	CT150		
		HL150 AI150	HL150 AI150	HL150 AI150	HL150 Al150	HL150 AI150	HL150 AI150	HL150 Al150	HL150 AI150	HL150 Al150	HL150 AI150	HL150 AI150	HL Al1
		AIIJU		AIIJU	A1150	71100	AIIJU	AIIJU	AIIJU	AIIJU	71130	AIIJU	
160mm		HL160	HL160	HL160	HL160	HL160	HL160	HL160	HL160	HL160	HL160	HL160	HL

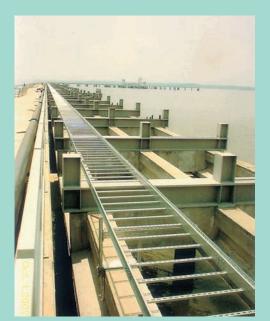

Electrical Continuity of Connections

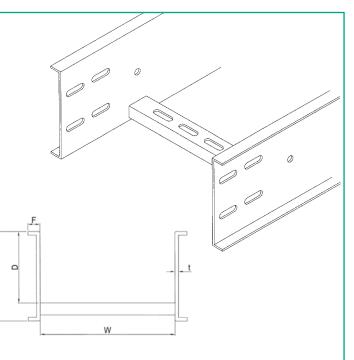
Table 2

Electrical Continuity of Connections are verified by Resistance Test. The net resistance of the joint shall not be more than 0.000330hm (NEMA VE1 clause 4.3)

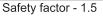
Metallic Cable

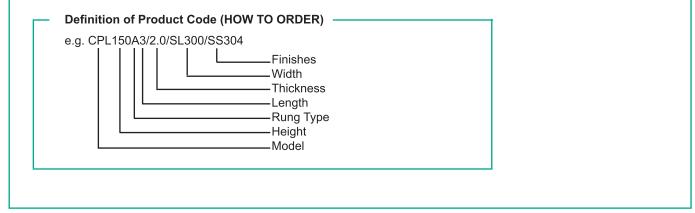
Ladder

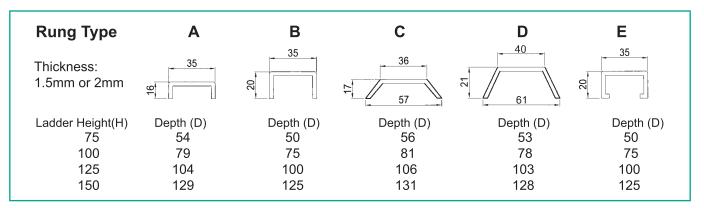
Tested to conform to all International Standards MOODY INTERNATIONAL QA SERVICES PTE LTD 40 HILLVIEW TERRACE, SINGAPORE 669266, TELEPHONE : 7608033, FAX : 7600767 E-MAIL : moodysim@mbox3.singuet.com.sg INSPECTION REPORT **ABS** Consulting DATE: 2ND. JUNE 1998 MIS JOB NO.: MIS-138-98 RE CLIENT P.O. NO. VENDOR/SUPPLIER LOCATION VENDOR P.O. NO. PLANT VISITED VISIT DATE CLIENT **INSPECTION REPORT** SBN INDUSTRIES SDN BHD NO. 6, JALAN PENAGA, PERINDUSTRIAN KOTA PUTRI 81750 MASAI, JOHOR, WEST MALAYSIA CABLE LADDER DESTRUCTION TEST EXPEDITOR INSPECTION TIME TRAVELLING TIME REPORTING TIME TOTAL MILEAGE PROJECT NO. 1107683 REPORT NO. 02-16297-SG ATTN : MR HAROLD LIM / CHUA W.S for COPIES TO : FILE M/S SBN INDUSTRIES SDN BHD. []HELD : [X] ACCEPTED [] REJECTED RESULTS OF INSPECTION ORDER STATUS [X] COMPLETE [] INCOMPLETE MATERIAL DESCRIPTION PREPARED BY QUANTITY MATERIAL DESCRIPTION ITEM NO ABSG Consulting Inc. CABLE LADDERS Singapore Office 20" JULY 2002 SUMMARY OF INSPEC This report was issued to 998 to witness load te BUREAU REPORTINO: BVK. 08-482-06 DATE 28⁶ Aug 2008 PAGE 1 of 1 CERTIFICATE OF CABLE LADDER LOAD TESTING PRESENT Harold Lim 2 Doreen Chiang 3. Chua W. S. Steven Chiem IL (Return Flange) Typ RFL = 150 x 25 x 15) ted Type (35 x 20 x 10) 20C Method A (Span Distance: 6M, W=148.8 6000 m WORLD WI TEST PROCEDURE: E-1-2002 = 1341 kg


Flat E	Bar Typ	e Ladd	er		
Length	:	3000mm			
Ladder ru	ng type :	A to E (1.5 o	r 2mm)		
Rung spa	cing :	230 or 300m	ım (9" or 12")	Ψ	
	ng slots :	11 x 35mm c			
Joint plate	;	2mm thick C	profile		
Fastener		M10 x 20mn Bolt/nut/FW/ (4 sets per jo	SW pint plate)	T T T T T T	
Model	H (mm)	T (mm)	W (mm)	Material	Coating
FB	38 50 75	3 - 6	SL150-900	Stainless Steel 304 Stainless Steel 316 or 316L Mild Steel	Hot Dip Galvanised
	100				Epoxy coated
	B38A3/3.0/SL	-	W TO ORDER) — Finishes — Width — Thickness — Length — Rung Type — Height — Model		

Rung Type	Α	В	С	D	Е
Thickness: 1.5mm or 2mm	<u>25</u>	35 R	≥ <u>57</u>		35 R
Ladder Height(H)	Depth (D)	Depth (D)	Depth (D)	Depth (D)	Depth (D)
38	19	15	21	18	15
50	31	27	33	30	27
75	56	52	58	55	52
100	81	77	83	80	77

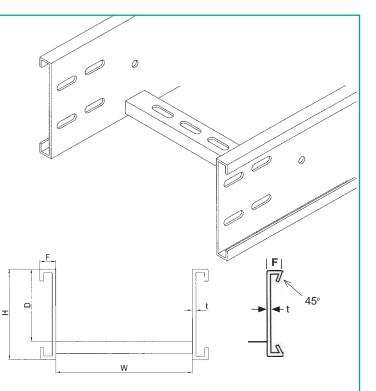

Open 'C' Type Ladder


Length	:	3000mm or 4000mm
Ladder rung type	:	A to E (1.5 or 2mm)
Rung spacing	:	230 or 300mm (9" or 12")
Ladder rung slots	:	11 x 35mm or 7 x 20mm
Joint plate	:	1.5 or 2mm thick
Fastener	:	M10 x 20mm Carriage Bolt/nut/FW/1SW (8 sets per joint plate)

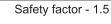


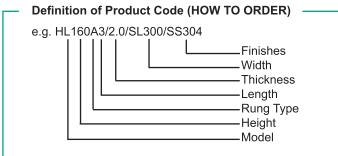
Model	H (mm)	NEMA Rating	T (mm)	W (mm)	Material	Coating
CPL	75 100 125 150	8AB 8ABC, 12A 8ABC, 12ABC 8ABC, 12ABC, 16ABC 20A	1.5 - 3	SL150-900	Stainless Steel 304 Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised Electro Galvanised	HDG Epoxy Coated

Т


Inwa	ard 'C	C' Type Ladd	er			
Length		: 3000mm or 4000	mm			
Ladder	rung type	e : A to E (1.5 or 2mr	m)		~	
Rung s	pacing	: 230 or 300mm (9'	' or 12")	F		
Ladder	rung slot	: 11 x 35mm or 7 x	20mm			
Joint pl	late	: 1.5mm or 2mm th	ick	цС		
Fasten	er	: M10 x 20mm Car Bolt/nut/FW/1 SW (8 sets per joint p	/		W	
Model	H (mm)	NEMA Pating	T (mm)	W (mm)	Matorial	Coating
Model CI	H (mm) 75 100 125 150	NEMA Rating 8AB 8ABC, 12A 8ABC, 12ABC 8ABC, 12ABC, 16ABC 20A	T (mm) 1.5 - 3	W (mm) SL150-900	Material Stainless Steel 304 Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised	Coating HDG Epoxy Coated
	75 100 125	8AB 8ABC, 12A 8ABC, 12ABC 8ABC, 12ABC, 16ABC			Stainless Steel 304 Stainless Steel 316 or 316L Aluminium 5052 Mild Steel	HDG
CI	75 100 125 150 efinition of	8AB 8ABC, 12A 8ABC, 12ABC 8ABC, 12ABC, 16ABC 20A Safety factor - 1.5 f Product Code (HOW TO 3/2.0/SL300/SS316	1.5 - 3	SL150-900	Stainless Steel 304 Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised	HDG

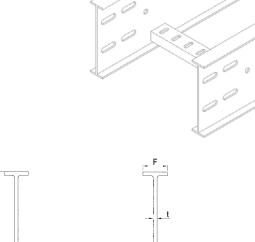
Rung Type	Α	B	С	D	E	
Thickness: 1.5mm or 2mm	<u>35</u>	35	36 57	<u>40</u> ۲	35	
Ladder Height (H)	Depth (D)	Depth (D)	Depth (D)	Depth (D)	Depth (D)	
75	54	50	56	53	50	
100	79	75	81	78	75	
125	104	100	106	103	100	
150	129	125	131	128	125	




Heavy Duty Return Flange Type Ladder

Length	: 3000mm or 6000mm
Ladder rung type	: A to E (1.5 or 2mm)
Rung spacing	: 230 or 300mm (9" or 12")
Ladder rung slot	: 11 x 35mm or 7 x 20mm
Joint plate	: 1.5mm or 2mm thick
Fastener	: M10 x 20mm Carriage Bolt/nut/FW/1 SW (8 sets per joint plate)

Model	H (mm)	NEMA Rating	T (mm)	W (mm)	Material	Coating
HL	75 100 125 150 160	8AB 8ABC, 12ABC 8ABC, 12ABC, 16AB, 20AB 8ABC, 12ABC, 16ABC, 20ABC 8ABC, 12ABC, 16ABC, 20ABC		SL150-900	Stainless Steel 304 Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised Electro Galvanised	HDG Epoxy Coated



Rung Type	Α	В	С	D	Е
Thickness: 1.5mm or 2mm	<u>35</u>	25 27	57 57	× 61	8
Ladder Height (H)	Depth (D)				
75	54	50	56	53	50
100	79	75	81	78	75
125	104	100	106	103	100
150	129	125	131	128	125
160	139	135	141	138	135

Heavy Duty Aluminium Ladder

Length	: 3000mm or 6000mm
Ladder rung type	: B (2 to 3mm)
Rung spacing	: 230 or 300mm (9" or 12")
Ladder rung slots	: 7 x 20L
Joint plate	: 2mm to 3mm thick
Fastener	: M10 x 20mm Carriage Bolt/nut/1FW/1SW (8 sets per joint plate)

W

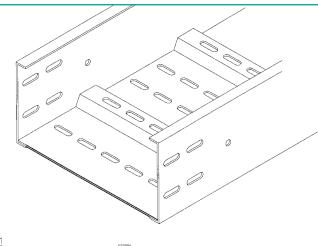
Mode	I H (mm)	NEMA Rating	T (mm)	W (mm)	Material
AI	150	8ABC, 12ABC, 16ABC, 20ABC	2 - 4	SL150-900	Marine grade 6063-T6 Aluminium

т

Safety factor - 1.5

g. AI150B3/3.0/SL450/6063-T6 Finishes Width Thickness Length Rung Type Height Model	
--	--

Rung Type	В
Thickness:	35
3.0mmT	R
Ladder Height (H)	Depth (D)
150	125


Corrugated Trough (Ventilated or Solid)

Heavy Duty Corrugated Trough

Length	: 3000mm or 6000mm
Trough rung type	: B (1.5 or 2mm)
Rung spacing	: 300mm (12")
Trough rung slot	: 11 x 35mm or 7 x 20mm

Joint plate : 1.5mm or 2mm thick

Fastener : M10 x 20mm Carriage Bolt/nut/FW/1 SW (8 sets per joint plate)



Model	H (mm)	NEMA Rating	T (mm)	W (mm)	Material	Coating
СТ	100 125 150	8ABC, 12ABC 8ABC, 12ABC, 16AB 8ABC, 12ABC, 16ABC	1.5 - 3	SL 150-900	Stainless Steel 304 Stainless Steel 316 or 316L Aluminium 5052	
		20ABC			Mild Steel	HDG Epoxy Coated
					Pre-Galvanised Electro Galvanised	

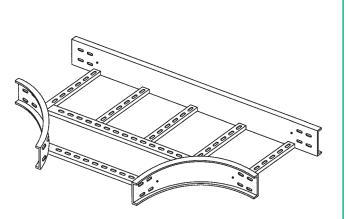
I

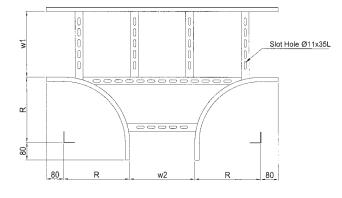
Safety factor - 1.5 Note: Aluminium thickness should be 2.0T and above

Rung Type	B
Thickness:	236
1.5mm or 2mm _—	20
Ladder Height (H)	Depth (D)
100	78
125	103
150	128

Knoc Type						
Totally	knock-d	own de	sign	200		
Most ve	ersatile	cable la	dder syste	em		
Flexibili Lower s	-		easy insta	llation		•
Model	H (mm)	T (mm)	W (mm)	Material	Coating]
	/					1
KFL	75 - 150	1.5 - 3	SL 150-900	Stainless Steel 304 Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised Electro Galvanised	HDG Epoxy Coated	-
— Definiti	on of Prod	uct Code (F	IOW TO ORDE	Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised Electro Galvanised		
— Definiti	on of Prod		IOW TO ORDE Ky ——————————————————————————————————	Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised Electro Galvanised ER) hes h kness th g Type ht		
— Definiti	on of Prod _125A3/1.5/	uct Code (F /SL450/Epo)	IOW TO ORDE Ky Finis Widtl Thick Leng Rung Heig	Stainless Steel 316 or 316L Aluminium 5052 Mild Steel Pre-Galvanised Electro Galvanised ER) hes h cness th g Type ht el C		

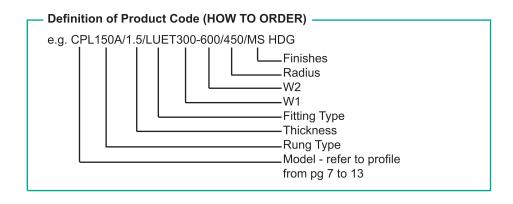
Fitting Type	Н	Н	Н	Н	н	W				XT		0
/LFB150	75	100	125	150	160	150				1	0	lol
/LFB300	75	100	125	150		300			K.	, N	10/	101
/LFB450	75	100	125	150	160	450)¢		1/0/	10
/LFB600	75	100	125	150	160	600		H.,	~	(g)	X	
/LFB750	75	100	125	150	160	750			N.	Ň	$\langle \cdot \rangle$	
/LFB900	75	100	125	150	160	900	/		202		· \	\
	200 60		000	1000	1 2 1 70	20		0000		/ `~		
150, 200, 300, 450, 5 Segment Degree: 3 –Definition of Product C	30º, 45	°, 60°,	90 ⁰			00		W		A	R	
	30º, 45' Code (°, 60°, HOW	90º TO OF	RDER		00				A	R	




Slot Hole Ø11x35L

Fitting Type	н	н	н	н	н	W1	W2
/LCO150	75	100	125	150	160	150	150
/LCO300	75	100	125	150	160	300	300
/LCO450	75	100	125	150	160	450	450
/LCO600	75	100	125	150	160	600	600
/LCO750	75	100	125	150	160	750	750
/LCO900	75	100	125	150	160	900	900
150, 200, 300, 450,		500,				2 Equ	
750, 900, 1000 & 12		500,				2 Equ 2 Une	
	200 Code ((HOW		W [.] RDEF	1 ≠ W R) — shes		

M R AK


Fitting Type	Н	Н	Н	Н	Н	W1	W2
/LET150-150	75	100	125	150	160	150	150
/LUET150-300	75	100	125	150	160	150	300
/LUET150-450	75	100	125	150	160	150	450
/LUET150-600	75	100	125	150	160	150	600
/LUET150-750	75	100	125	150	160	150	750
/LUET150-900	75	100	125	150	160	150	900
/LUET300-150	75	100	125	150	160	300	150
/LET300-300	75	100	125	150	160	300	300
/LUET300-450	75	100	125	150	160	300	450
/LUET300-600	75	100	125	150	160	300	600
/LUET300-750	75	100	125	150	160	300	750
/LUET300-900	75	100	125	150	160	300	900
/LUET450-150	75	100	125	150	160	450	150
/LUET450-300	75	100	125	150	160	450	300
/LET450-450	75	100	125	150	160	450	450
/LUET450-600	75	100	125	150	160	450	600
/LUET450-750	75	100	125	150	160	450	750
/LUET450-900	75	100	125	150	160	450	900
/LUET600-150	75	100	125	150	160	600	150
/LUET600-300	75	100	125	150	160	600	300
/LUET600-450	75	100	125	150	160	600	450
/LET600-600	75	100	125	150	160	600	600
/LUET600-750	75	100	125	150	160	600	750
/LUET600-900	75	100	125	150	160	600	900
/LUET750-150	75	100	125	150	160	750	150
/LUET750-300	75	100	125	150	160	750	300
/LUET750-450	75	100	125	150	160	750	450
/LUET750-600	75	100	125	150	160	750	600
/LET750-750	75	100	125	150	160	750	750
/LUET750-900	75	100	125	150	160	750	900
/LUET900-150	75	100	125	150	160	900	150
/LUET900-300	75	100	125	150	160	900	300
/LUET900-450	75	100	125	150	160	900	450
/LUET900-600	75	100	125	150	160	900	600
/LUET900-750	75	100	125	150	160	900	750
/LET900-900	75	100	125	150	160	900	900

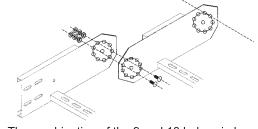
Radius (R) mm :

150, 200, 300, 450, 500, 600, 750, 900, 1000 & 1200

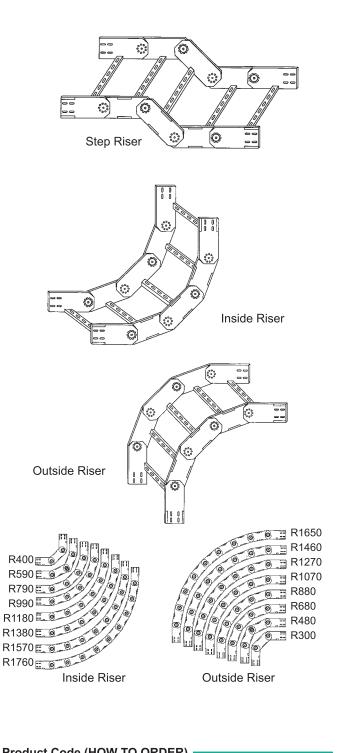
Metallic Cable Ladder (Flexible Risers)

These are flexible means of coping on site with difficult installation situations. When used in conjunction with articulated bends and bendable fishplates these accessories can solve most mis-alignment problems. However, minor alignment difficulties may be overcome more simply using vertically hinged connectors.

Articulated risers can be used in a number of ways depending upon the circumstances. They should always be assembled together before being lifted in situ and there are two alternative approaches to installation:


- A. Using the centre bolts the component can be assembled and tightened to an approximation of the required shape then installed and adjusted in situ.
- B. If the required radius is known then the various sections can be locked into predetermined positions during assembly creating a component with a fixed, known radius which can then be installed.

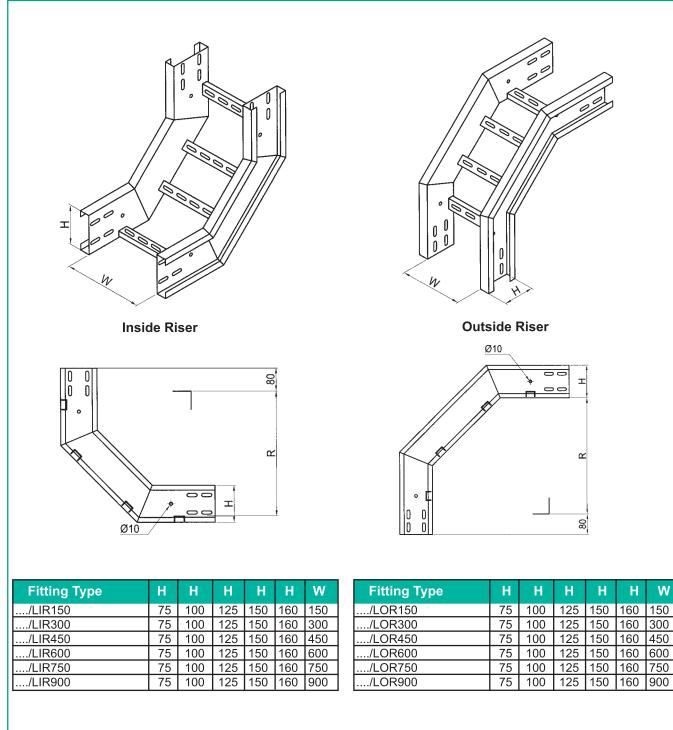
Sets can be split to create assemblies (more vertically hinged connectors will be required) or joined together to create extra long components.

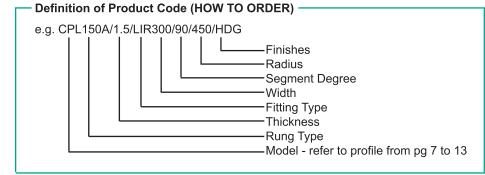

Totally flexible with angle adjustment of every 4 degree

Riser Assembly

- (A) Match the square hole with round holes in sequence
- (B) 2 sets of M8 hex bolt/nuts/2 flat washer/1 spring washer to fix at one side
 - 1 no installed to center of the round holes
 - 1 no fix for angular position

The combination of the 9 and 10 holes circles gives adjustment in steps of 4 degree




Fitting Type	W
/FR150	150
/FR300	300
/FR450	450
/FR600	600
/FR750	750
/FR900	900

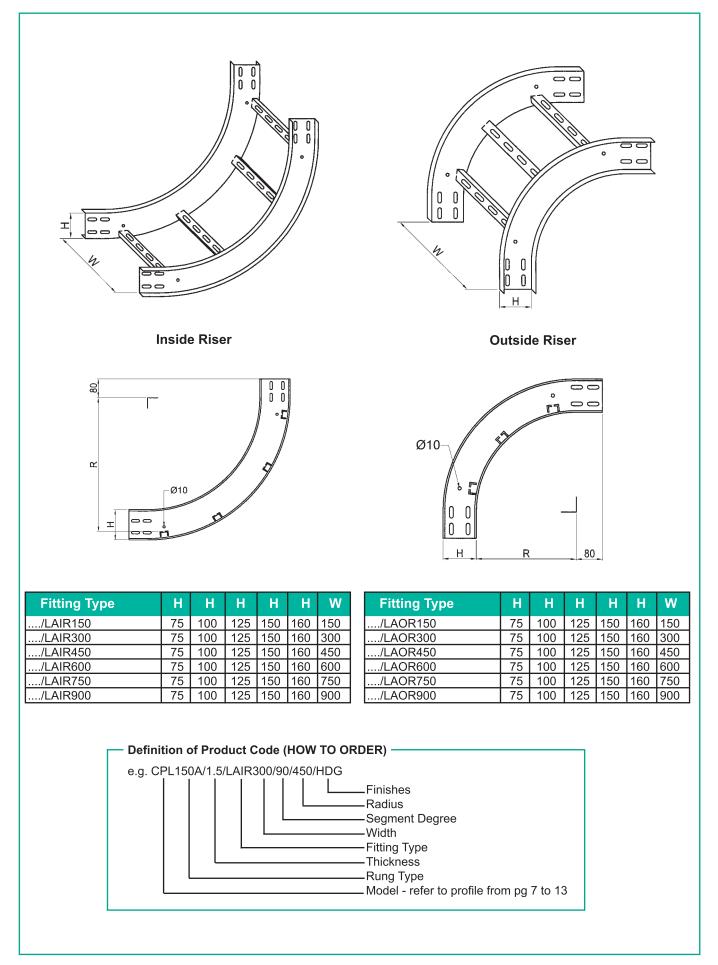
Metallic Cable Ladder (Angle Riser)

Page 17

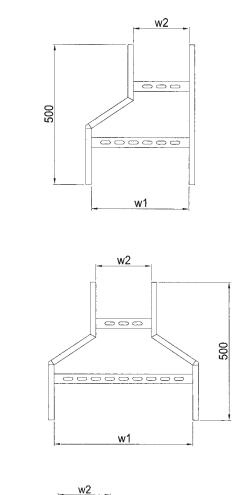
W

300

450

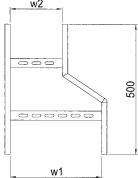

600

160 150

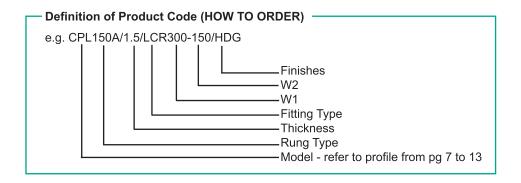

160

M*RAK

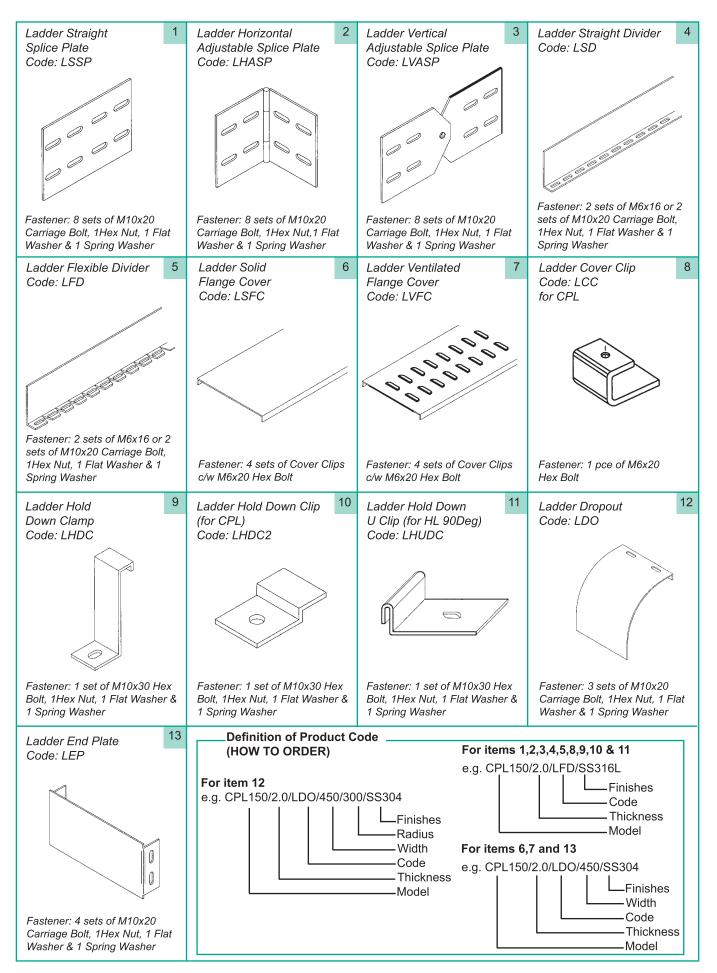
Metallic Cable Ladder (Arc Riser)



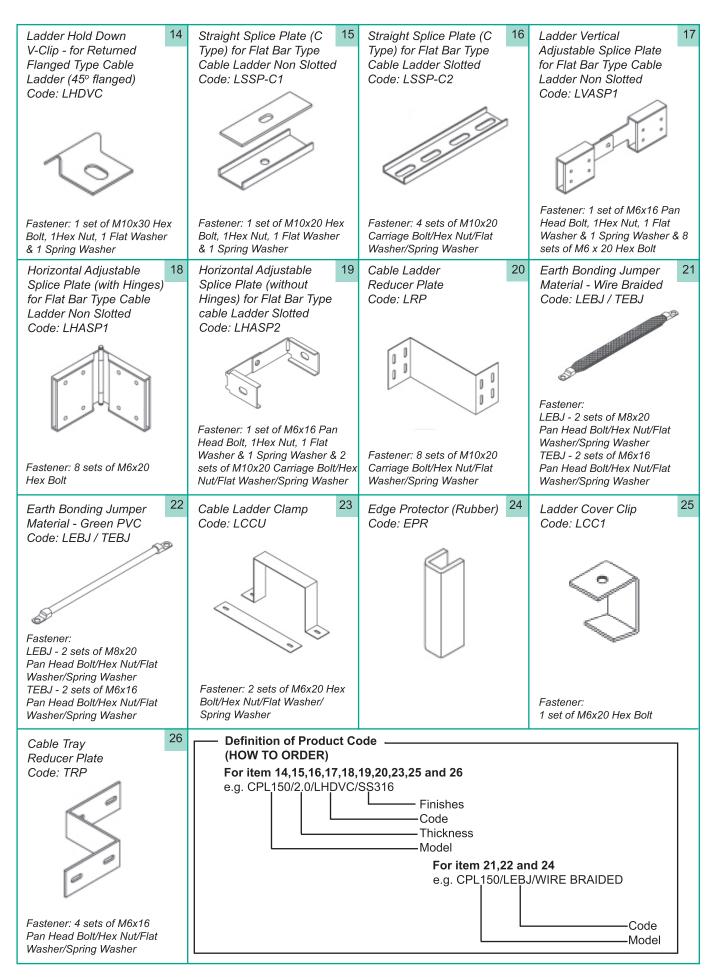
Left Hand Reducer


Fitting Type	Н	Н	Н	Н	Н	W1	W2
/LLR300-150	75	100	125	150	160	300	150
/LLR450-300	75	100	125	150	160	450	300
/LLR450-150	75	100	125	150	160	450	150
/LLR600-450	75	100	125	150	160	600	450
/LLR600-300	75	100	125	150	160	600	300
/LLR600-150	75	100	125	150	160	600	150
/LLR750-600	75	100	125	150	160	750	600

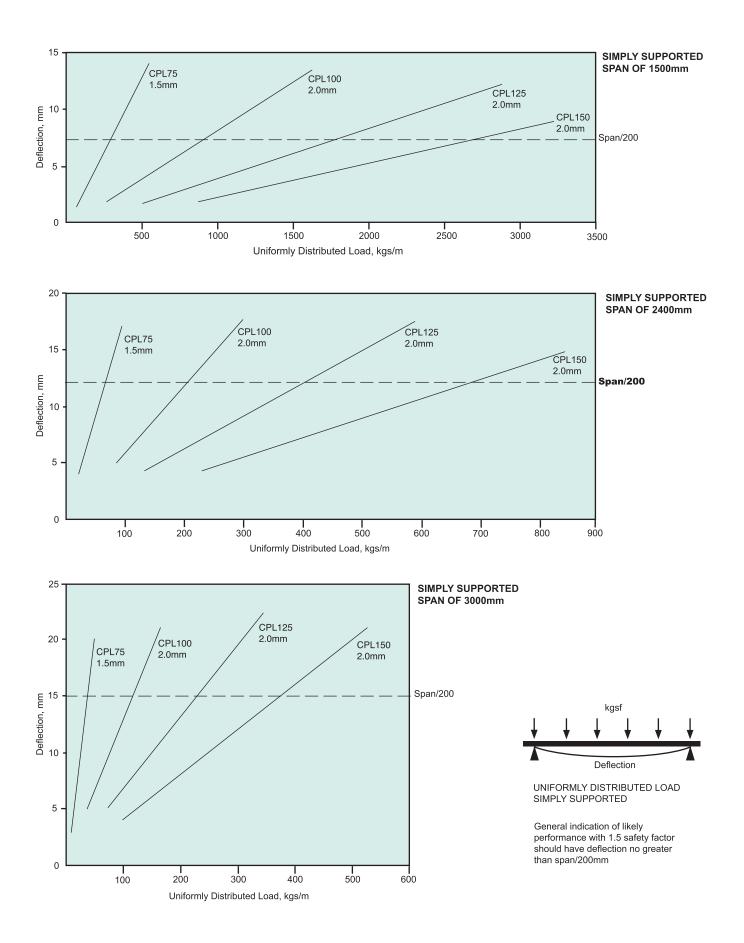
Concentric Redu	lcer						
Fitting Type	Н	Н	Н	Н	Η	W1	W2
/LCR300-150	75	100	125	150	160	300	150
/LCR450-300	75	100	125	150	160	450	300
/LCR450-150	75	100	125	150	160	450	150
/LCR600-450	75	100	125	150	160	600	450
/LCR600-300	75	100	125	150	160	600	300
/LCR600-150	75	100	125	150	160	600	150
/LCR750-600	75	100	125	150	160	750	600


Right Hand Reducer

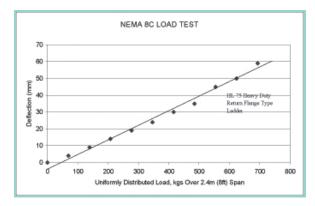
5									
Fitting Type	Н	Н	Н	Н	Η	W1	W2		
/LRR300-150	75	100	125	150	160	300	150		
/LRR450-300	75	100	125	150	160	450	300		
/LRR450-150	75	100	125	150	160	450	150		
/LRR600-450	75	100	125	150	160	600	450		
/LRR600-300	75	100	125	150	160	600	300		
/LRR600-150	75	100	125	150	160	600	150		
/LRR750-600	75	100	125	150	160	750	600		

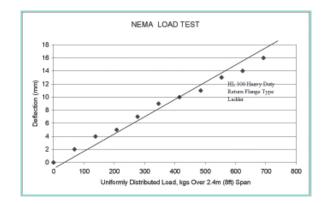


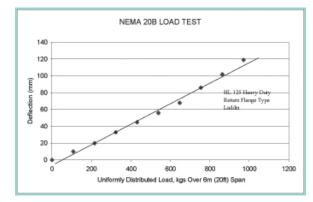
Cable Ladder (Accessories)

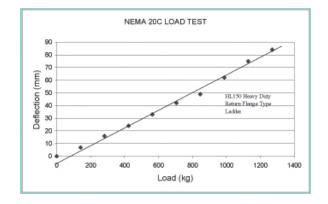


Cable Ladder (Accessories)



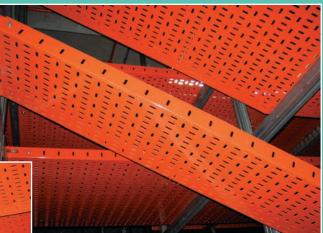

Metallic Cable Ladder (Load Capacity)



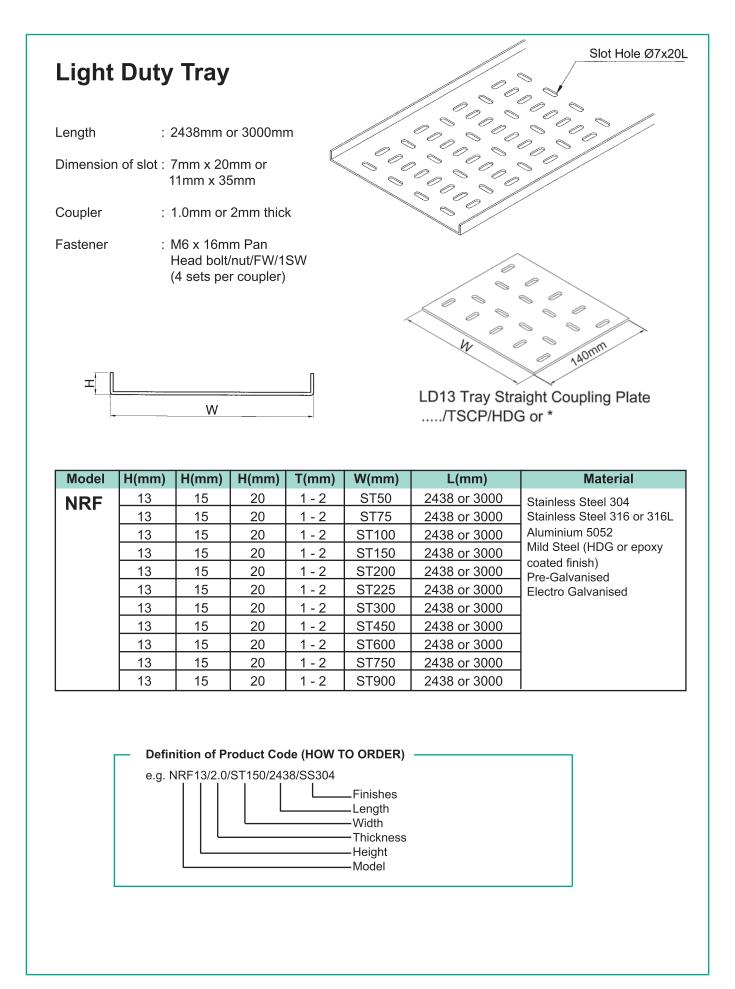


Metallic Cable Ladder (Load Capacity)

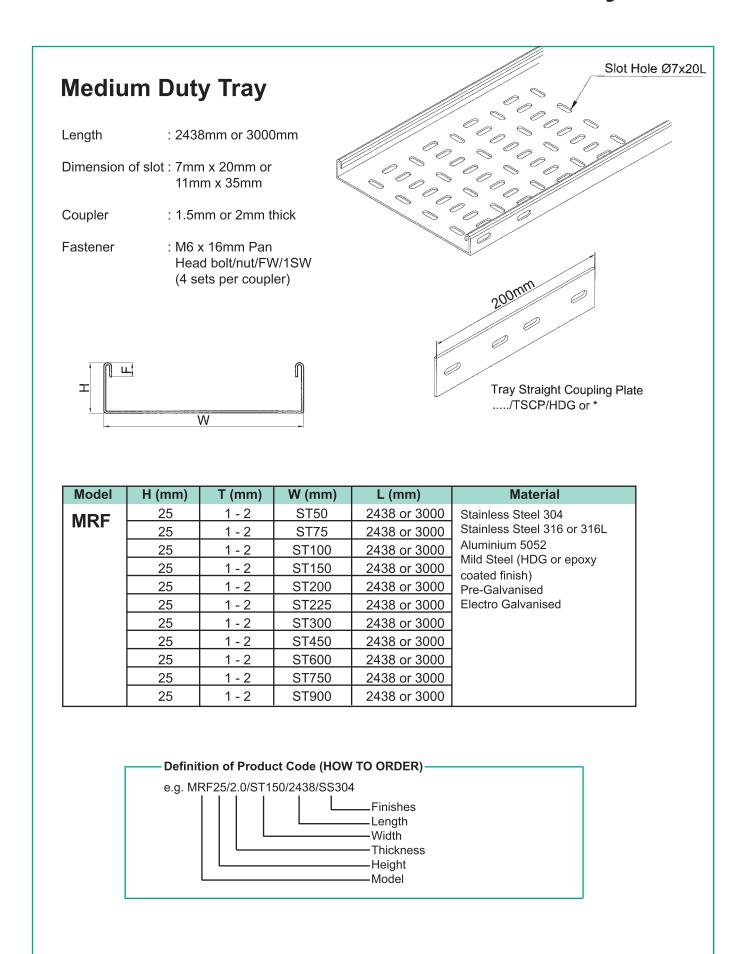
Metallic Cable Ladder


Page 24

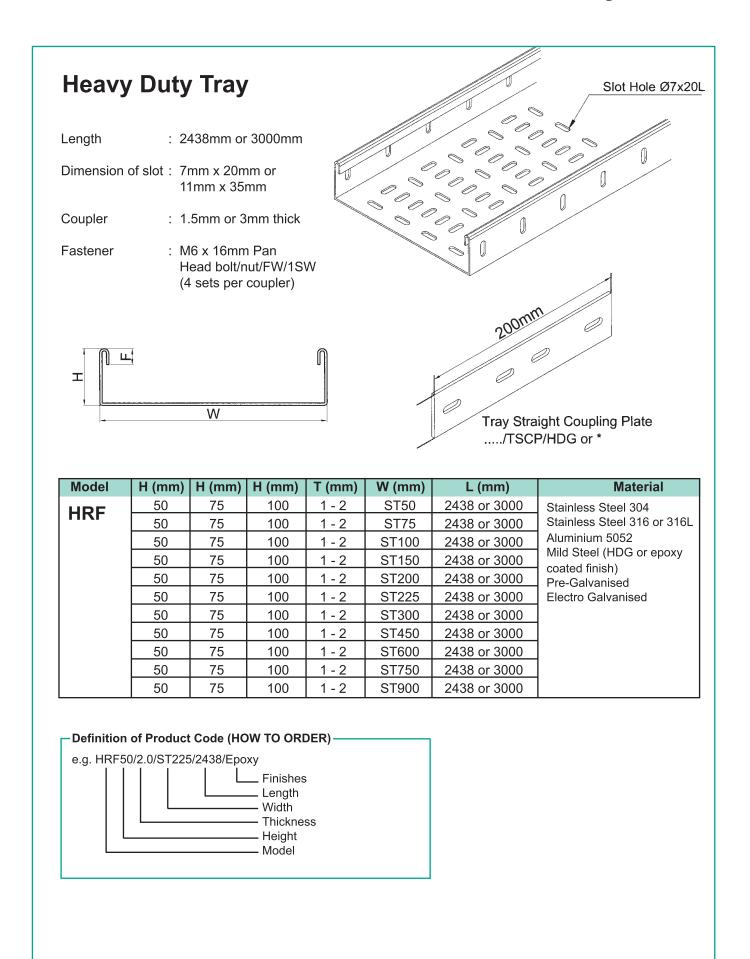
Metallic Cable



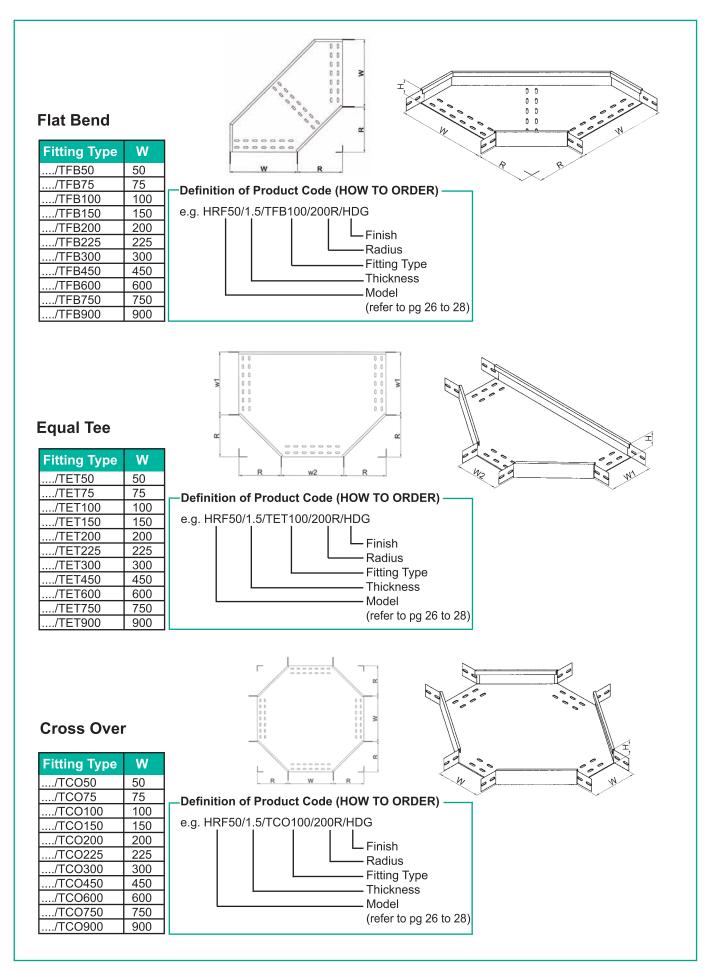
Tray



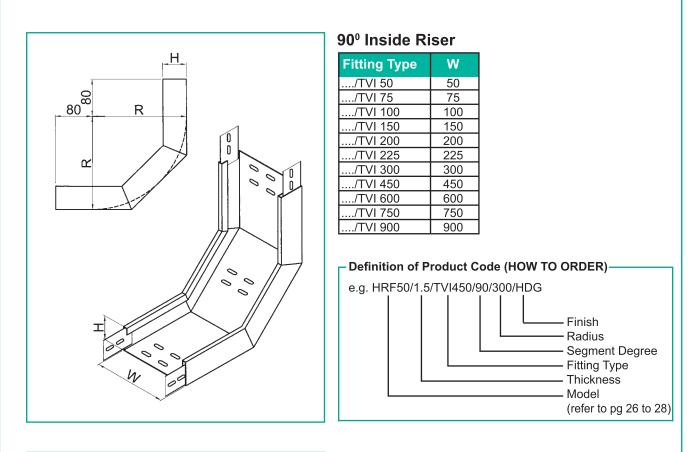
Perforated Cable Tray (Straight)

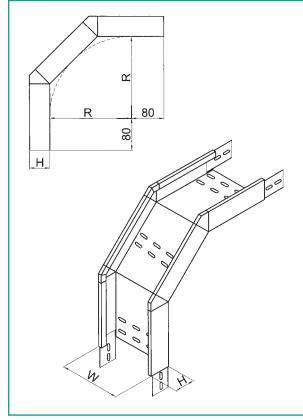


Perforated Cable Tray (Straight)

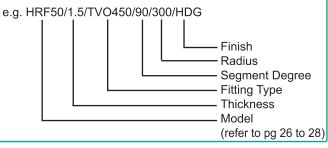


Perforated Cable Tray (Straight)

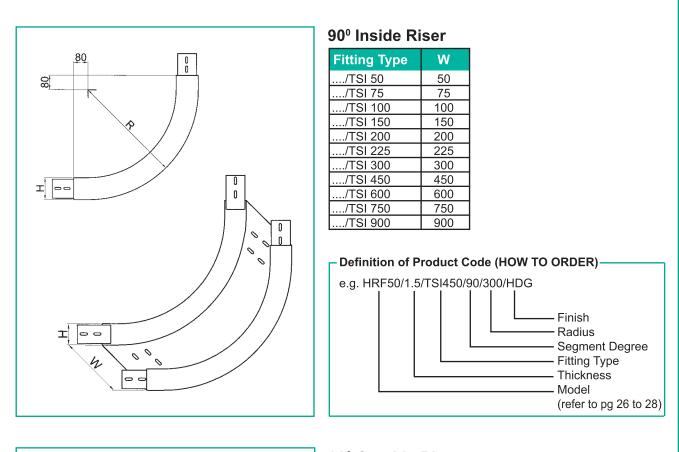

M*RAK

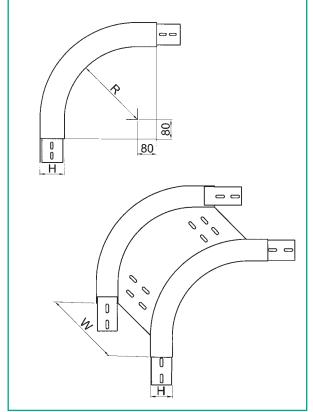

Perforated Cable Tray (Fittings)

Cable Tray (Angle Risers)



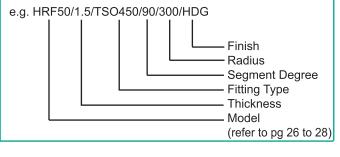
90º Outside Riser


Fitting Type	W
/TVO 50	50
/TVO 75	75
/TVO 100	100
/TVO 150	150
/TVO 200	200
/TVO 225	225
/TVO 300	300
/TVO 450	450
/TVO 600	600
/TVO 750	750
/TVO 900	900

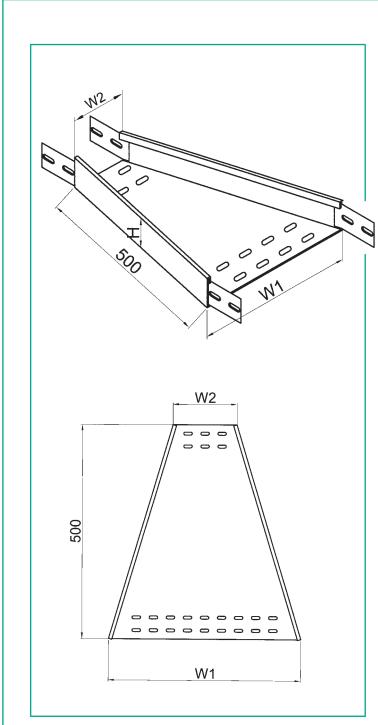

–Definition of Product Code (HOW TO ORDER) –

M*RAK

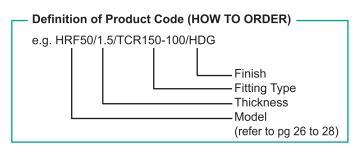
Cable Tray (Sweep Type Risers)



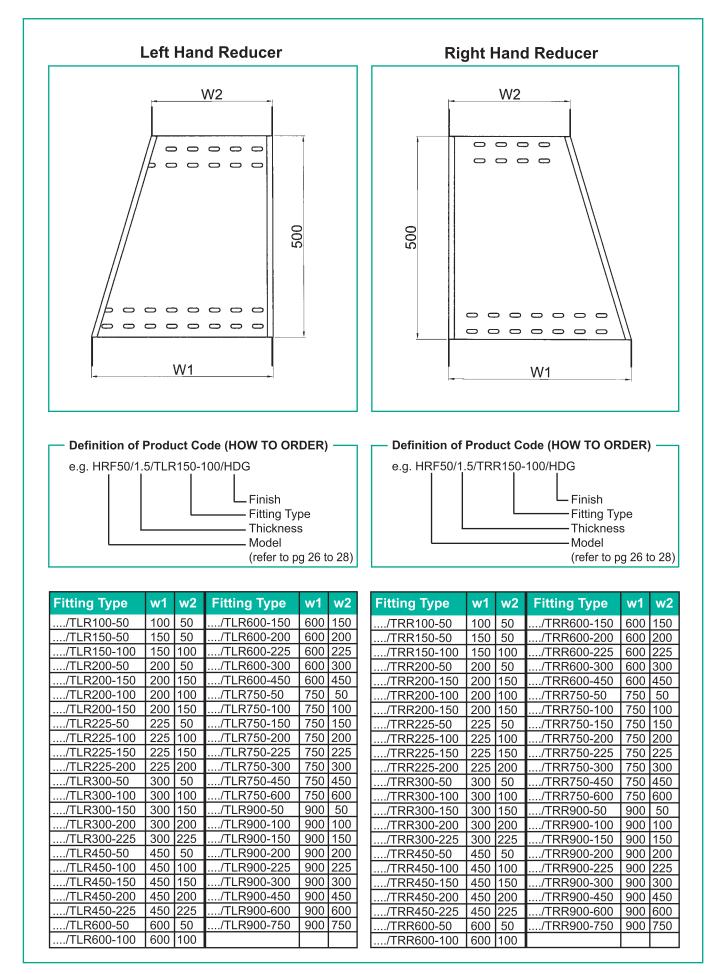
90º Outside Riser


Fitting Type	W
/TSO 50	50
/TSO 75	75
/TSO 100	100
/TSO 150	150
/TSO 200	200
/TSO 225	225
/TSO 300	300
/TSO 450	450
/TSO 600	600
/TSO 750	750
/TSO 900	900

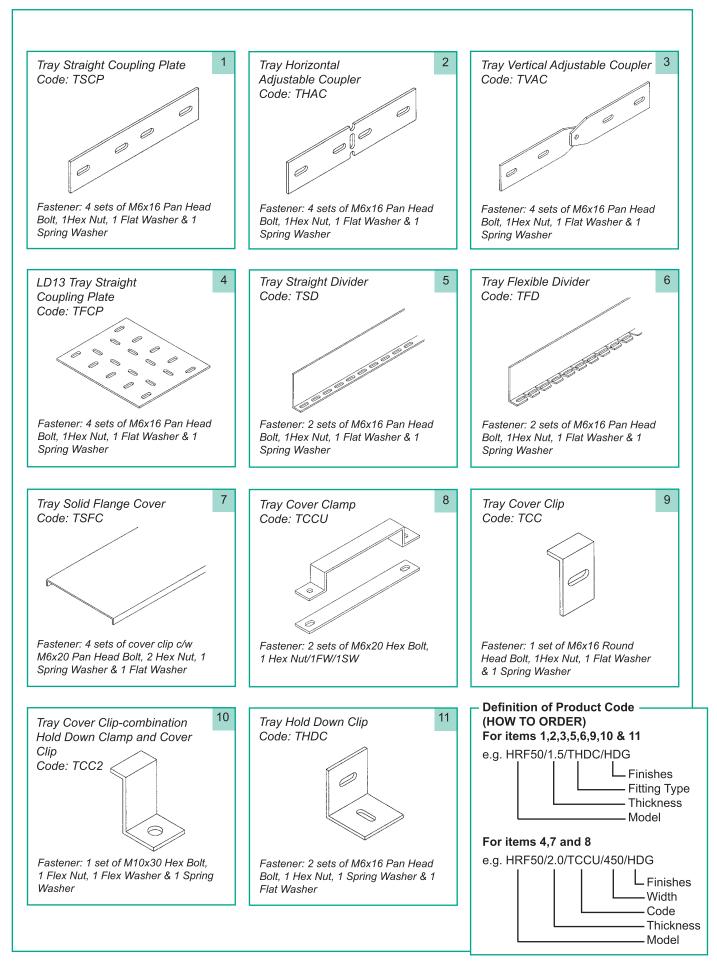
-Definition of Product Code (HOW TO ORDER) -



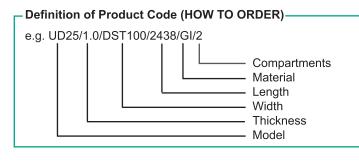
MXRAK

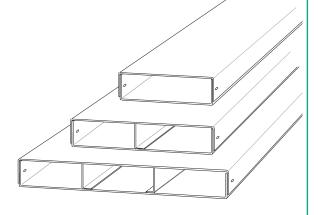

Cable Tray (Concentric Reducer)

	_	
Fitting Type	w1	w2
/TCR100-50	100	50
/TCR150-50	150	50
/TCR150-100	150	100
/TCR200-50	200	50
/TCR200-150	200	150
/TCR200-100	200	100
/TCR200-150	200	150
/TCR225-50	225	50
/TCR225-100	225	100
/TCR225-150	225	150
/TCR225-200	225	200
/TCR300-50	300	50
/TCR300-100	300	100
/TCR300-150	300	150
/TCR300-200	300	200
/TCR300-225	300	225
/TCR450-50	450	50
/TCR450-100	450	100
/TCR450-150	450	150
/TCR450-200	450	200
/TCR450-225	450	225
/TCR600-50	600	50
/TCR600-100	600	100
/TCR600-150	600	150
/TCR600-200	600	200
/TCR600-225	600	225
/TCR600-300	600	300
/TCR600-450	600	450
/TCR750-50	750	
/TCR750-100	750	100
/TCR750-150	750	150
/TCR750-200	750	200
/TCR750-225	750	225
/TCR750-300	750	300
/TCR750-450	750	450
/TCR750-600	750	600
/TCR900-50	900	50
/TCR900-100	900	
/TCR900-150	900	150
/TCR900-200	900	200
/TCR900-225	900	225
/TCR900-300	900	300
/TCR900-450	900	450
/TCR900-600	900	600
/TCR900-750	900	750
	1 300	1,00

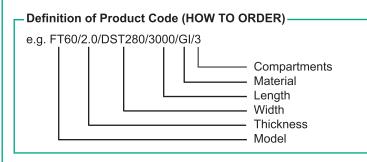


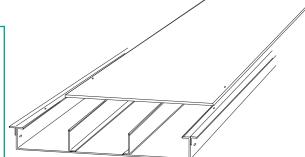
Cable Tray (Accessories)




Cable Trunking Systems

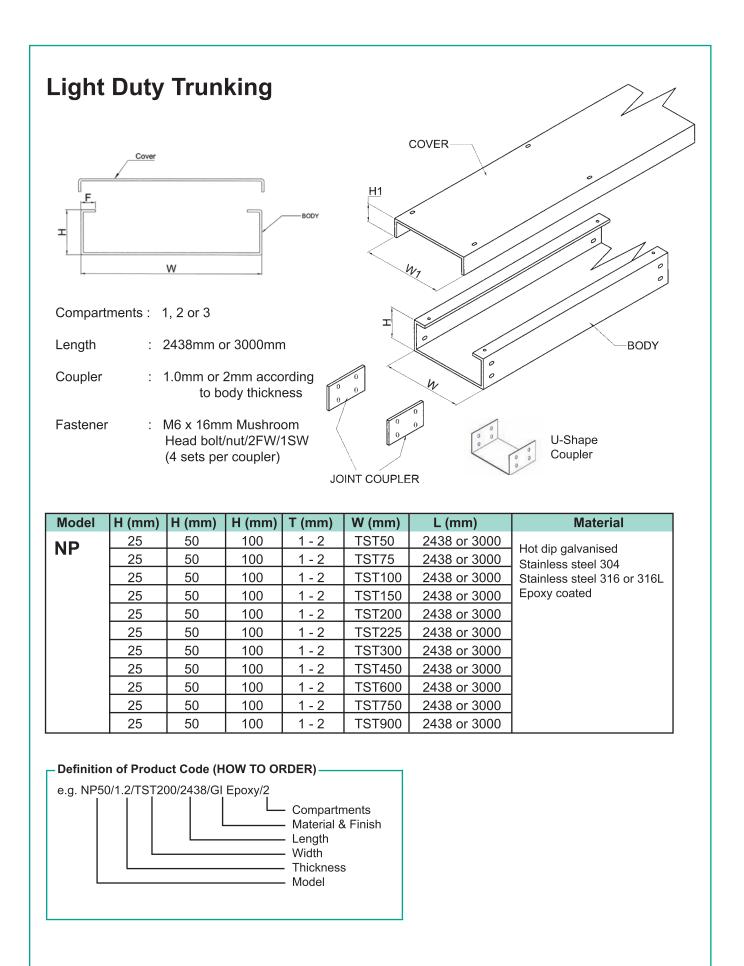
Floor Distribution Systems


Underfloor Ducting System

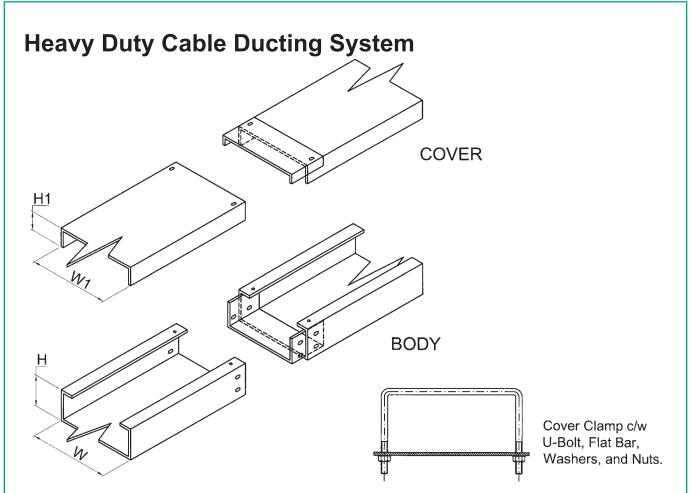


Model	H (mm)	H (mm)	H (mm)	T (mm)	W (mm)	L (mm)	Material
	25	32	38	0.8 - 2.0	DST50	1500, 2438 or 3000	Stainless Steel 304
	25	32	38	0.8 - 2.0	DST75	1500, 2438 or 3000	Stainless Steel 316 or 316L
	25	32	38	0.8 - 2.0	DST100	1500, 2438 or 3000	Aluminium 5052
	25	32	38	0.8 - 2.0	DST150	1500, 2438 or 3000	Mild Steel (HDG or epoxy
	25	32	38	0.8 - 2.0	DST200	1500, 2438 or 3000	coated finish) Pre-Galvanised
	25	32	38	0.8 - 2.0	DST225	1500, 2438 or 3000	Electro Galvanised
	25	32	38	0.8 - 2.0	DST250	1500, 2438 or 3000	
	25	32	38	0.8 - 2.0	DST275	1500, 2438 or 3000	
	25	32	38	0.8 - 2.0	DST300	1500, 2438 or 3000	
	25	32	38	0.8 - 2.0	DST375	1500, 2438 or 3000	

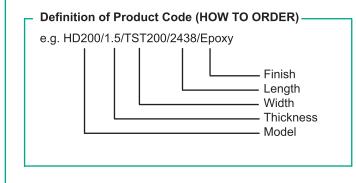
Flushfloor Trunking System



Model	H (mm)	T (mm)	W (mm)	L (mm)	Material
FT	60	0.8 - 2.0	DST155	1500, 2438 or 3000	Stainless Steel 304
	60	0.8 - 2.0	DST280	1500, 2438 or 3000	Stainless Steel 316 or 316L Aluminium 5052
	60	0.8 - 2.0	DST405	1500, 2438 or 3000	Mild Steel (HDG or epoxy
Model	H (mm)	T (mm)	W (mm)	L (mm)	coated finish) Pre-Galvanised Electro Galvanised
FT	28	0.8 - 2.0	DST100	1500, 2438 or 3000	
	28	0.8 - 2.0	DST150	1500, 2438 or 3000	
	28	0.8 - 2.0	DST200	1500, 2438 or 3000	
	28	0.8 - 2.0	DST225	1500, 2438 or 3000	
	28	0.8 - 2.0	DST300	1500, 2438 or 3000	



Cable Trunking

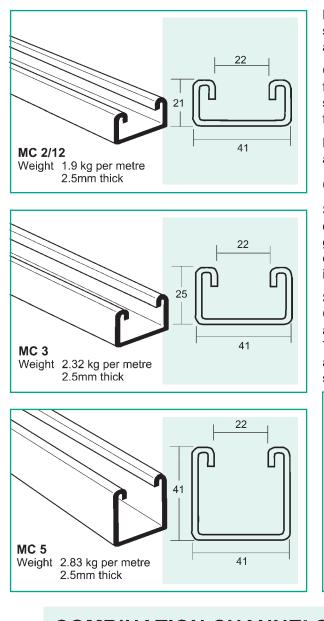


Cable Trunking

Fittings & Accessories - please refer to manufacturer

Model	H (mm)	T (mm)	W (mm)	L (mm)	Material				
HD	150	200	250	300	400	1.5 - 3.2	TST50	2438 or 3000	Stainless Steel 304
	150	200	250	300	400	1.5 - 3.2	TST75	2438 or 3000	Stainless Steel 316 or 316L
	150	200	250	300	400	1.5 - 3.2	TST100	2438 or 3000	Aluminium 5052
	150	200	250	300	400	1.5 - 3.2	TST150	2438 or 3000	Mild Steel (HDG or epoxy
	150	200	250	300	400	1.5 - 3.2	TST200	2438 or 3000	coated finish) Pre-Galvanised
	150	200	250	300	400	1.5 - 3.2	TST225	2438 or 3000	Electro Galvanised
	150	200	250	300	400	1.5 - 3.2	TST300	2438 or 3000	
	150	200	250	300	400	1.5 - 3.2	TST450	2438 or 3000	
	150	200	250	300	400	1.5 - 3.2	TST600	2438 or 3000	
	150	200	250	300	400	1.5 - 3.2	TST750	2438 or 3000	
	150	200	250	300	400	1.5 - 3.2	TST900	2438 or 3000	

Channels


Cantilever Supports

Concrete Inserts

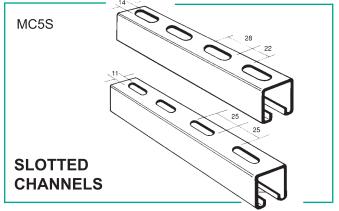
Fittings and Brackets

Clamps and Hangers

Accessories

M*RAK Metal Framing Systems are designed as a support system which has almost infinite permutations, it provides a rigid structure without welding or drilling.

Construction and allied industries find M*RAK ideal as a framing system for structural supports, service supports, suspended ceilings, raised flooring and as concrete inserts for fixing.


M*RAK is economical in that after installation it is easily adjustable, demountable and reusable.

CHANNELS

Standard finishes for M*RAK channels consist of hot dipped galvanized to BS EN ISO 1461/BS 729, pregalvanized to BS 2989 1982 and mill finish. Special coatings are available, e.g. Epoxy, Polyester, Nylon, etc, in a range of colours upon request.

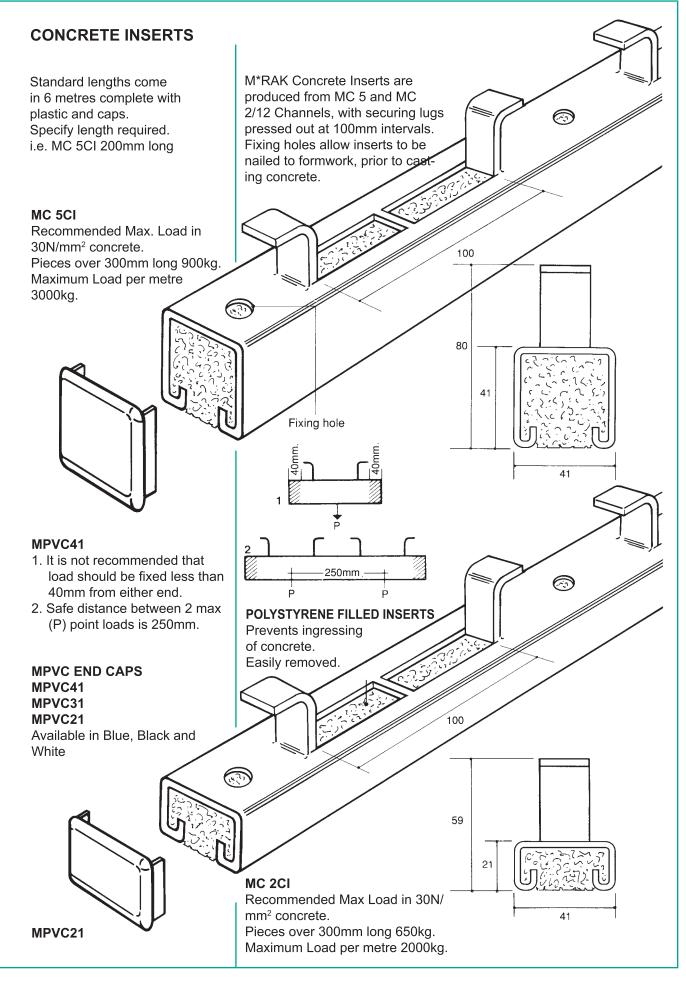
Stainless Steel

Channels are available in MC5 and MC2/12 etc. Sections are cold rolled from marine grade stainless steel reference T316L. A full range of fittings and accessories are also available as standard items. Please specify stainless steel when ordering.

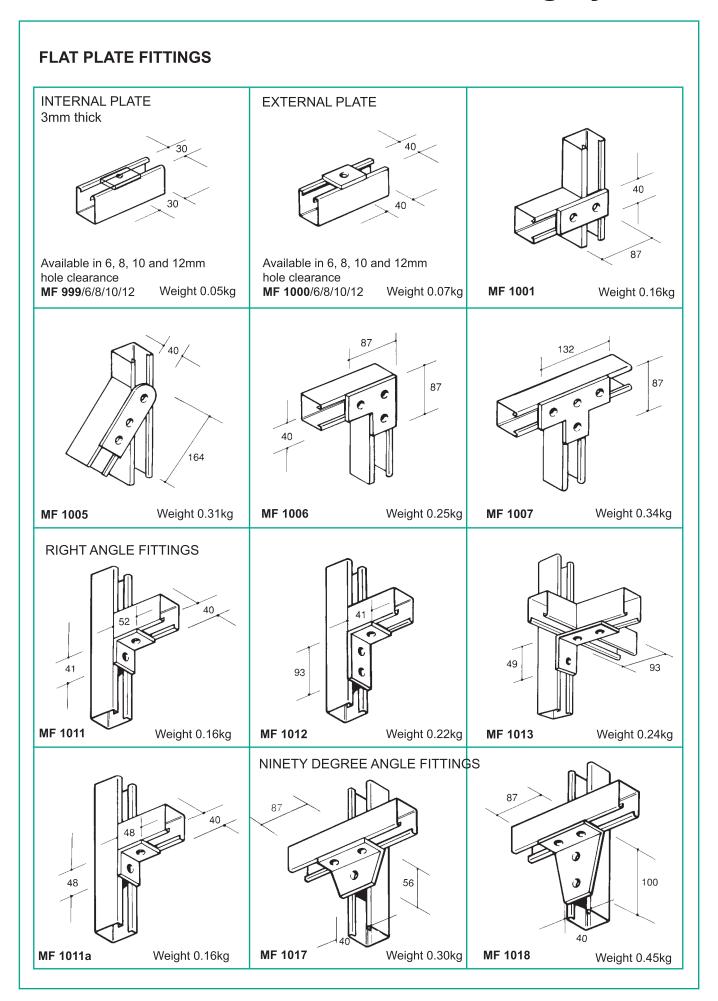
COMBINATION CHANNELS Standard Finishes: $\left(\right)$ MC 2/12A Pre-galvanized to BS 2989 Stainless Steel ۲ 42 HDG to BS EN ISO 1461/BS 729 MC 5B MC 5E MC 5/2X MC 5C MC 5D 41 J ſ Other 2 combination channels MC 5/2Z available MC 5A to order. MC 5K 82 L τ. MC 5G MC 5H MC 5J Л MC 5/2Y MC 5P MC 5L MC 5N

Page 40

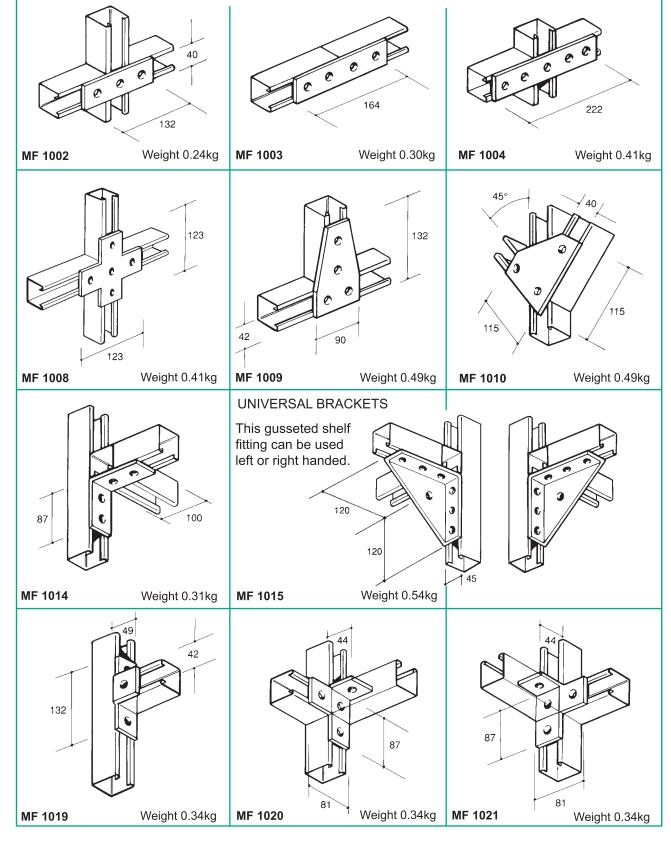
mm kgf kgf kgf kgf 250 8005 600 - 1000 195 118 - 1000 195 118 - Mc 2/12 2500 60 - 20 500 815 8155 - - 1000 466 320 - - 500 815 8155 - - 1000 466 100 - - - 1000 466 100 - - - Mc 2/12A 3000 105 40 - - 1500 260 166 100 - - Mc 3 1500 161 50 140 - - 1000 242 100 - - - - 1000 253 515 - - - - 1000 252 100	CHANNEL DA	TA Span	Dist	Uniformly ributed Load 172N/mm ² Stress	Distrib at de	formly uted Load eflection pan/360	Unifor Distribute at defle of span	ed Load ection	
500 1000 295 150 295 150 295 150 295 150 295 150 118 150 118 150 MC 2/12 2000 74 - 34 34 MC 2/12 2000 60 - 20 MC 2/12 2000 60 315 815 - MC 2/12 2000 200 200 65 164 MC 2/12 2000 200 200 65 164 MC 2/12A 3000 105 200 65 164 MC 2/12A 3000 105 200 200 200 200 65 MC 3 500 443 443 - 200 45 140 MC 3 2000 121 318 140 140 MC 3 2000 121 328 42 140 MC 3 2000 121 328 140 140 MC 45 2000 208 90 122 140		mm							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		250		600		600	_		
Image: Constraint of the system of				295			-		
MC 2/12 2000 3000 74 60 - 34 20 MC 2/12 2000 3000 60 50 115 300 2			1000			65			
MC 2/12 2000 3000 74 60 - 34 20 MC 2/12 2000 3000 60 50 115 300 2	ር ባ								
MC 2/12 2500 60 - 20 S000 500 815 815 - - 20 MC 2/12A 3000 200 865 144 -									
Bit Bits Bits Bits Image: Construct of the second s	MC 2/12					-			
Image: Construct of the system of t		3000		50					
MC 2/12A 2900 160 46 100 3500 108 23 46 4000 95 17 34 4500 84 13 26 500 483 483 - MC 3 2000 121 30 70 MC 3 2000 121 30 70 MC 5 500 1057 - 28 500 1057 1057 - 28 500 1057 1057 - 200 MC 5 2000 264 100 210 26 3000 80 - 48 - 60 3000 167 42 84 - - 3000 167 42 84 - - 3000 130 - 44 - - - Good 2892 - - - - - -	0 0						-		
MC 2/12A 2900 160 46 100 3500 108 23 46 4000 95 17 34 4500 84 13 26 500 483 483 - MC 3 2000 121 30 70 MC 3 2000 121 30 70 MC 5 500 1057 - 28 500 1057 1057 - 28 500 1057 1057 - 200 MC 5 2000 264 100 210 26 3000 80 - 48 - 60 3000 167 42 84 - - 3000 167 42 84 - - 3000 130 - 44 - - - Good 2892 - - - - - -	['']						-		
MC 2/12A 2000 160 46 100 3500 108 23 46 4500 84 13 26 MC 3 2000 121 30 70 MC 3 2000 121 30 70 MC 3 2000 121 30 70 MC 5 500 1057 - 28 500 1057 1057 - 28 500 1057 1057 - 28 500 1057 1057 - 200 210 3000 80 - 28 90 126 500 2039 90 126 - - 3000 167 42 84 - - 3000 167 42 84 - - - MC 5A 3000 723 - - - - - MC 5A 3000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>								1	
3500 108 23 44 4000 95 17 34 4000 84 13 26 500 483 4433 - MC 3 1000 242 110 - MC 3 2000 121 30 70 MC 5 2000 80 - 28 500 1057 1057 - MC 5 2000 264 100 210 MC 5 2000 264 100 210 MC 5 2000 264 100 210 MC 5 2000 268 90 126 3000 167 42 84 4000 130 - 44 500 2892 - - MC 5A 90 126 3000 482 910 24.2 300 37 7 1000 1444 - 60 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
4000 95 17 34 4000 84 13 26 MC 3 500 242 110 - MC 3 2000 121 30 70 MC 3 2000 121 30 70 MC 3 2000 1057 1057 - MC 5 500 1067 1057 - MC 5 2000 225 190 - MC 5 2000 226 190 - MC 5 2000 284 100 210 MC 5 2000 284 100 210 MC 5 2000 2882 190 - MC 5 2000 2892 - - MC 5 00 2892 - - Safe uniformly distributed loads are tabulated for sim, supported spans based on a stress of 172N/m² whith - M6 5.0 3.7 - - - - M6	MC 2/12A								
4500 84 13 26 MC 3 500 483 483 - MC 3 2000 110 - - MC 3 2500 97 28 42 3000 80 - 28 42 3000 80 - 28 42 3000 80 - 28 42 3000 80 - 28 42 3000 80 - 28 42 3000 1057 1057 - - 1000 529 515 - - 2000 264 100 210 - 2500 2000 264 100 210 - 3500 148 - 42 84 - 1000 1446 - - - - 2000 723 - - - - 1020 77<									
Soc 483 483 - MC 3 2000 1500 161 58 140 MC 3 2000 121 30 70 MC 3 2000 121 30 70 MC 3 2000 121 30 70 MC 5 500 1057 - 28 MC 5 1500 352 190 - MC 5 2500 264 100 210 MC 5 2500 268 90 126 MC 5 2500 268 90 126 MC 5 2500 2892 144 - J000 1448 - 60 J000 1446 - - Safe uniformly distributed loads are tabulated for sim suported spans based on a stress of 172N/m ² whith suported spans based on a stress of 172N/m ² whith suported spans based on a stress of 172N/m ² whith suported spans based on a stress of 172N/m ² whith suported spans based on a stress of 172N/m ² whith suported spans based on a stress of 172N/m ² whith suported spans based on a stress of 172N/m ² whith suported spans based on a stress									
MC 3 1500 161 158 140 MC 3 2000 121 30 70 MC 3 2500 97 28 42 3000 80 - 28 MC 5 500 1057 - MC 5 2000 264 100 210 MC 5 2000 208 90 126 MC 3 3000 167 42 84 3000 167 42 84 3000 167 42 84 3000 167 42 84 3000 167 42 84 3000 188 - 60 M000 130 - 44 000 2892 - - MC 5A 3000 482 - - Safe uniformly distributed loads are tabulated for sim, supported spans based on a stress of 172N/mm² whe deflection is not a critical factor. Where deflections is not a critical factor. Where deflections tor minute for these sections and	0								
MC 3 1500 161 58 140 Q000 121 380 70 Q000 127 28 42 3000 80 - 28 MC 3 500 1057 - 1000 529 515 - MC 5 2000 264 100 210 2500 208 90 126 - 3000 167 42 84 - 3000 148 - - 60 4000 1300 - 444 - 500 2892 - - - 1000 1446 - - - 601 700 128 - - Safe uniformly distributed loads are tabulated for simp supported spans based on a stress of 172N/m? whe deflection is not a critical factor. Where deflection is to limited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply ideflection by 0.8 M10 5.0 3.7 17.7									
2000 121 30 70 2500 80 - 28 42 3000 80 - 28 42 3000 1007 1057 - 28 MC 5 500 1567 - - MC 5 2000 264 100 210 2500 208 90 126 - 3000 167 42 84 - 3000 167 42 84 - 3000 167 42 84 - 3000 167 42 84 - 3000 148 - - 60 4000 130 - 44 - - 1000 2892 - - - - 1446 - - - - - Plated Only 5.0 3.7 17.7 - - M10 <t< td=""><td>MC 3</td><td>1500</td><td></td><td></td><td></td><td colspan="2"></td><td colspan="2">140</td></t<>	MC 3	1500						140	
Jooo 80 - 28 MC 5 500 1057 1057 - MC 5 2000 264 100 210 JOOO 200 264 100 210 JOOO 352 190 - - JOOO 264 100 210 - JOOO 264 100 210 - JOOO 264 100 210 - JOOO 200 284 100 210 JOOO 167 42 84 - JOOO 130 - 44 - JOOO 12892 - - - JOOO 12892 - - - JOOO 12892 - - - JOOO 723 - - - JOOO 723 - - - JOOO 723 300 - -	INIC 3								
S00 1057 1057 - MC 5 1500 352 190 - 2000 264 100 210 2000 264 100 210 3000 167 42 84 3500 148 - 60 4000 130 - 44 500 2892 - - 1000 1446 - - 2000 723 - - Bolt Torque Data Safe uniformly distributed loads are tabulated for simp supported spans based on a stress of 172N/mm ² whe deflection is not a critical factor. Where deflection is to a limitorm, use alternative safe loads. For loads concentrated in the centre of the span multiply load by 0.5 Multiply deflection by 0.8 Technical information for these sections and other chann and combinations is available on request. 103 MS 4 150 MS 4 300 MS 4 450 MS 4 500 Mittiply deflection by 0.8 Technical informatin for these sections and other chann and combinations is availabl									
MC 5 1000 529 515 - MC 5 1500 352 190 - 2000 264 100 210 2500 208 90 126 3500 148 - 60 4000 130 - 44 500 2892 - - 1000 1446 - - 1000 1446 - - 1000 1446 - - 2000 723 - - 1000 1446 - - 2000 723 - - Safe uniformly distributed loads are tabulated for sim - - Safe uniformly distributed loads are tabulated for sim - - MC 5.0 3.7 - - - M10 24.2 17.7 - - - M12 41.8 30.8 - - - M				1057		1057			
Mic 3 2000 264 100 210 2500 208 90 126 3000 167 42 84 4000 130 - 44 500 2892 - - 1000 1446 - - - 2000 723 - - - 2000 723 - - - 2000 723 - - - Sametric Newton/Metres Foot/Pounds Safe uniformly distributed loads are tabulated for sims supported spans based on a stress of 172N/mm² whe deflection is not a critical factor. Where deflection is to Imitely to ad by 0.5 - - M10 24.2 17.7 - - - - M12 41.8 30.8 - - - - - Sectionical information for these sections and other channe and combinations is available on request. - - - - M12 41.8 30.8 - - -		1000				515			
2500 208 90 128 3000 167 42 84 3500 148 - 60 4000 130 - 44 500 2892 - - MC 5A 2000 723 - - Bolt Torque Data - - - - Isometric Coarse Threads Plated Only Newton/Metres (N/M) Foot/Pounds (ft/lbs) Safe uniformly distributed loads are tabulated for sim supported spans based on a stress of 172N/mm ² whe deflection is not a critical factor. Where deflection is to limited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply deflection by 0.8 M6 5.0 3.7 M10 24.2 17.7 M12 41.8 30.8 EANTILEVER ARMS MMS 4 150 150 100 398 0.92 BMS 4 150 150 110 398 0.92 1.7 BMS 4 150 150 110 398 0.92 1.7 BMS 4 150 150 110 160 <td< td=""><td>MC 5</td><td></td><td></td><td></td><td></td><td colspan="2"></td><td></td></td<>	MC 5								
3000 3500 4000 167 148 3500 42 50 1000 84 50 MC 5A 500 1000 2892 1446 - - MC 5A 3000 482 - - Bolt Torque Data - - - - Isometric Coarse Threads Plated Only M12 Newton/Metres (N/M) Foot/Pounds (ft/lbs) Notes: Safe uniformly distributed loads are tabulated for sim supported spans based on a stress of 172N/mm ² whe deflection is not a critical factor. Where deflection is to limited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply load by 0.5 multiply deflection by 0.8 Technical information for these sections and other chann and combinations is available on request. CANTILEVER ARMS Part No. Length A Length B UDL Kg Weigl Kg MS 4 150 150 110 398 0.92 BMS 4 450 450 110 160 1.74 BMS 4 450 450 110 120 2.174 BMS 5 150 150 150 1250 1.74 BMS 5 450 450 150 1250 1.74 BMS 5 450 150 150	0 0								
A000 130 . 44 500 2892 . <t< td=""><td>- I. I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	- I. I								
Notes: Safe uniformly distributed loads are tabulated for simple supported spans based on a stress of 172N/mm ² who deflection is not a critical factor. Where deflection is to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply deflection by 0.8 M6 5.0 3.7 M10 24.2 17.7 M12 24.2 17.7 M12 Safe uniformly distributed in the centre of the span multiply deflection by 0.8 Technical information for these sections and other chann and combinations is available on request. CANTILEVER ARMS Part No. Length A Length B UDL Kg Weight Mg M8 4 150 150 110 398 0.92 BMS 4 150 150 110 398 0.92 BMS 4 150 150 110 398 0.92 BMS 4 50 150 110 398 0.92 BMS 4 50 150 150 150 17.7 BMS 4 50 150 150 150 17.7 BMS 4 150 150 110 398 0.92 BMS 4 150 150 110 398						-			
Image: Note of the second se		4000				-	44		
U U 2000 3000 723 482 . Bolt Torque Data Bolt Torque Data Notes: Safe uniformly distributed loads are tabulated for simp supported spans based on a stress of 172N/mm² whe deflection is not a critical factor. Where deflection is to limited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply load by 0.5 multiply deflection by 0.8 Technical information for these sections and other chann and combinations is available on request. CANTILEVER ARMS Part No. Length A Length B UDL Kg Weigl Mg M6 M10 M12 Ms 4 150 150 110 398 0.92 BMS 4 150 150 110 160 1.74 BMS 4 550 150 110 160 1.74 BMS 4 550 150 110 160 1.74 BMS 4 550 150 150 1250 1.74 BMS 5 150 150 150 1250 1.74 BMS 5 450 150 150 150 1250 1.74 BMS 5 500 500 500 500 504 </th <th></th> <th></th> <th colspan="2"></th> <th></th> <th></th> <th>-</th> <th></th>							-		
MC 5A 3000 482 - Bolt Torque Data Isometric Coarse Threads Plated Only Newton/Metres (N/M) Foot/Pounds (ft/lbs) Safe uniformly distributed loads are tabulated for sim supported spans based on a stress of 172N/mm ² whe deflection is not a critical factor. Where deflection is to limited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply deflection by 0.8 Technical information for these sections and other chann and combinations is available on request. CANTILEVER ARMS Part No. Length A Length B UDL Kg Weigl Kg BMS 4 150 150 110 398 0.92 BMS 4 450 450 110 160 1.74 BMS 4 150 150 110 398 0.92 BMS 4 150 150 110 102 2.17 BMS 4 450 450 110 160 1.74 BMS 4 450 150 150 1250 1.74 BMS 5 300 300 150 907 3.26	ך ט						1		
Isometric Coarse Threads Plated OnlyNewton/Metres (N/M)Foot/Pounds (ft/lbs)Safe uniformly distributed loads are tabulated for sim supported spans based on a stress of 172N/mm² whe deflection is not a critical factor. Where deflection is to limited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply load by 0.5 multiply deflection by 0.8 Technical information for these sections and other chann and combinations is available on request.CANTILEVER ARMSPart No.Length ALength BUDL KgWeight Weight MS 4## <t< th=""><th>MC 5A</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th></t<>	MC 5A						-		
Isometric Coarse Threads Plated OnlyNewton/Metres (N/M)Foot/Pounds (ft/lbs)Safe uniformly distributed loads are tabulated for sim supported spans based on a stress of 172N/mm² whe deflection is not a critical factor. Where deflection is to limited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply load by 0.5 multiply deflection by 0.8 Technical information for these sections and other chann and combinations is available on request.CANTILEVER ARMSPart No.Length ALength BUDL KgWeight Weight MS 4## <t< td=""><td>Bolt Torque I</td><td>Data</td><td>·</td><td>N</td><td>otes:</td><td></td><td>·</td><td></td></t<>	Bolt Torque I	Data	·	N	otes:		·		
Coarse Threads Plated Only (N/M) (ft/lbs) off(ft/lbs) off(ft/lbs) M6 5.0 3.7 17.7 10.8 160 representation for these sections and other channel and combinations is available on request. CANTILEVER ARMS Part No. Length A Length B UDL Kg Weighted by 0.9 BMS 4 150 150 110 398 0.92 BMS 4 450 450 110 160 1.74 BMS 4 450 150 110 102 2.17 BMS 5 150 150 150 1250 1.74 BMS 5 450 450 150 1250 1.74<	Isometric	Newton/Metres	Eoot/P						
Plated Only Imited to a minimum, use alternative safe loads. For loads concentrated in the centre of the span multiply load by 0.5 multiply deflection by 0.8 Technical information for these sections and other channa and combinations is available on request. CANTILEVER ARMS Part No. Length A Length B UDL Kg Weight Kg BMS 4 150 150 110 398 0.92 BMS 4 300 300 110 252 1.38 BMS 4 450 450 110 160 1.74 BMS 4 450 450 110 102 2.17 BMS 5 150 150 150 1250 1.74 BMS 5 450 450 150 1250 1.74 BMS 5 450 150 150 1250 1.74 BMS 5 150 150 150 1250 1.74 BMS 5 450 450 150 544 4.12 BMS 5 450 600 600 150 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
M6 M10 M12 5.0 24.2 41.8 3.7 17.7 30.8 multiply load by 0.5 multiply deflection by 0.8 Technical information for these sections and other channal and combinations is available on request. CANTILEVER ARMS Part No. Length A mm Length B mm UDL Kg kg Weight kg BMS 4 150 150 110 398 0.92 BMS 4 450 450 110 160 1.74 BMS 4 450 450 110 102 2.17 BMS 4 750 750 110 51 2.64 BMS 5 150 150 150 1250 1.74 BMS 5 450 450 150 544 4.12 BMS 5 450 600 600 150 544 4.98		· · · ·	, i	lin					
Mito 24.2 17.7 30.8 multiply deflection by 0.8 M12 41.8 17.7 30.8 Technical information for these sections and other channel and combinations is available on request. CANTILEVER ARMS Image: section of the sectin of the sectin of the sectin of the section of the sect							tre of the span		
M10 M12 24.2 41.8 17.7 30.8 Technical information for these sections and other channel and combinations is available on request. CANTILEVER ARMS Part No. Length A Length B UDL Kg Weight kg BMS 4 150 150 110 398 0.92 BMS 4 450 450 110 252 1.38 BMS 4 450 450 110 160 1.74 BMS 4 450 450 110 160 1.74 BMS 5 150 150 150 1250 1.74 BMS 5 150 150 150 1250 1.74 BMS 5 450 450 150 150 144 4.12 BMS 5 450 450 150 544 4.12 BMS 5 600 600 150 454 4.98									
CANTILEVER ARMS Part No. Length A mm Length B mm UDL Kg kg Weigh kg BMS 4 150 150 110 398 0.92 BMS 4 450 450 110 252 1.38 BMS 4 450 450 110 160 1.74 BMS 4 750 750 110 51 2.64 BMS 5 150 150 150 1250 1.74 BMS 5 450 450 150 544 4.12 BMS 5 600 600 150 544 4.98				./ 	chnical informat	hnical information for these sections and other chann			
mm mm kg kg B BMS 4 150 150 110 398 0.92 BMS 4 300 300 110 252 1.38 BMS 4 450 450 110 160 1.74 BMS 4 750 750 110 51 2.64 BMS 5 150 150 150 1250 1.74 BMS 5 300 300 150 907 3.26 BMS 5 450 450 150 544 4.12 BMS 5 600 600 150 454 4.98	IVITZ	41.0	50	ar	nd combinations	is available on ı	equest.		
B B B S 4 150 110 398 0.92 B B S 4 300 300 110 252 1.38 B B S 4 50 450 110 160 1.74 B B S 4 50 600 600 110 102 2.17 B B S 4 600 600 110 102 2.17 B S 150 150 150 1250 1.74 B S 5 150 150 1250 1.74 B S 5 300 300 150 907 3.26 B S 5 500 600 150 544 4.12 B S 600 600 150 454 4.98	CANTILEVE	Part No.	-	-	-	Weight			
B B B MS 4 300 MS 4 B MS 4 450 B MS 4 750 B MS 5 150 B MS 5 150 B MS 5 450 B MS 4 5 B MS 5 B MS 4 5 B MS 4 5 B MS 5 B MS 4 5 B MS 5 B MS C S S B MS 5 B S S S S S S S S S S S S S S S S S S		/					•	_	
B B B MS 4 B MS 4 B MS 4 B MS 4 B MS 4 B MS 4 B MS 4 B MS 4 B MS 4 450 600 110 102 2.17 B MS 4 600 600 110 102 2.17 B MS 4 750 110 51 2.64 B MS 5 150 150 150 150 150 907 3.26 B MS 5 450 600 150 150 150 150 150 150 150 1		A							
MS 4 BMS 4 600 600 110 102 2.17 BMS 4 750 750 110 51 2.64 BMS 5 150 150 150 1250 1.74 BMS 5 300 300 150 907 3.26 BMS 5 450 450 150 544 4.12 BMS 5 600 600 150 454 4.98								1.74	
MS 4 BMS 4 750 750 110 51 2.64 BMS 5 150 150 150 1250 1.74 BMS 5 300 300 150 907 3.26 BMS 5 450 450 150 544 4.12 BMS 5 600 600 150 454 4.98	B D							2.17	
BMS 5 150 150 1250 1.74 BMS 5 300 300 150 907 3.26 BMS 5 450 450 150 544 4.12 BMS 5 600 600 150 454 4.98		MS 4						2.64	
BMS 5 450 450 150 544 4.12 BMS 5 600 600 150 454 4.98				BMS 5 150	150	150		1.74	
BMS 5 600 600 150 454 4.98		/						3.26	
		A						4.12	
BII BMIS 5 /50 /50 150 363 5.83									
								4.98	


1

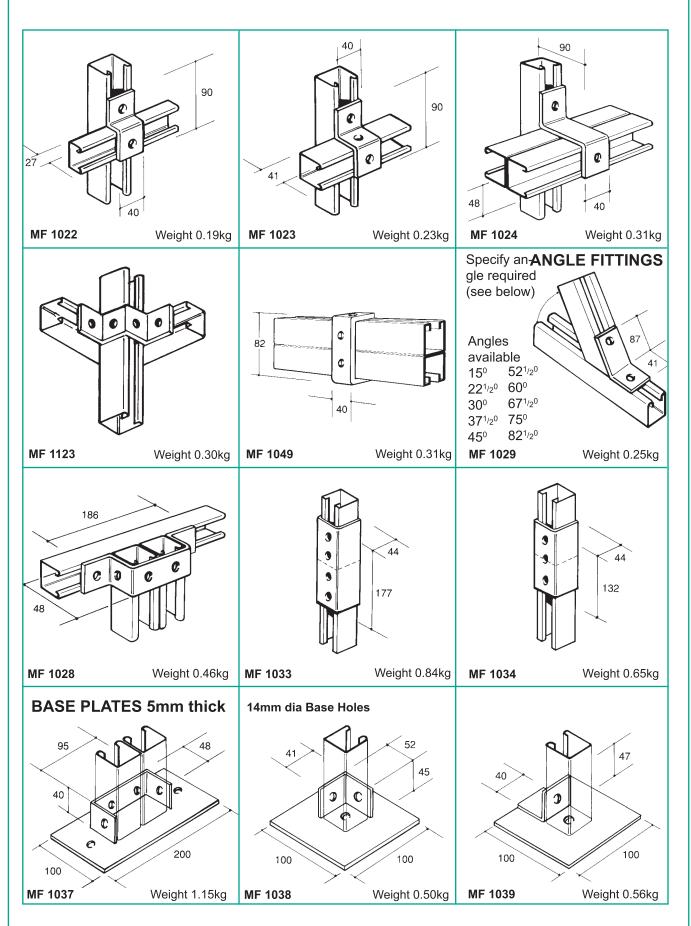
MS 5


All cantilever arms are in hot dipped galvanised

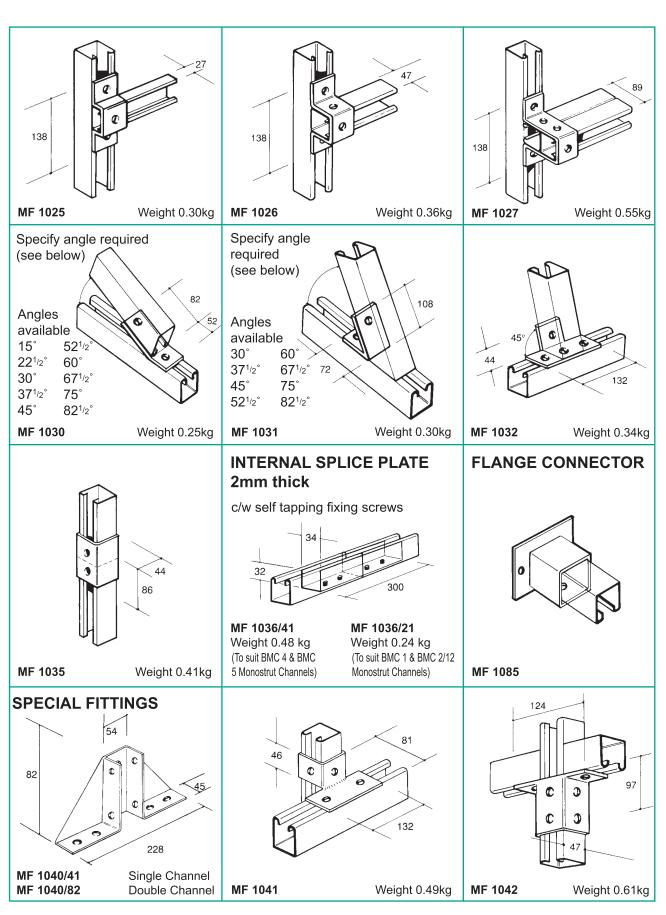
finish to BS EN ISO1461/BS 729.



FLAT PLATE FITTINGS

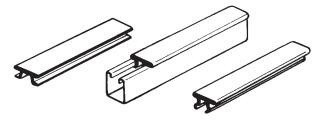

Unless otherwise stated all fittings are manufactured from 6mm thick steel strip and are hot dip galvanized to BS EN ISO 1461/BS 729. Standard hole diameter will be 14mm to give clearance on M12 diameter set screws. For best results use M12 Channel Nuts and Bolts.

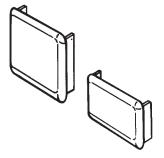
Page 44



'Z' FITTINGS

'U' FITTINGS


Page 46


PIPE CLAMPS TYPE 'A'	Part Number	Minimum Pipe Diameter (mm)	Minimum Pipe Diameter (mm)	Part Number	Minimum Pipe Diameter (mm)	Minimum Pipe Diamete (mm)
Hot dipped galvanized finish.		()	. ,		()	()
11 5	MS AC 201	8.7	10.3	MS AC 218	48.4	52.4
Bolts & nuts included.	MS AC 202	10.3	12.7	MS AC 219	52.4	58.7
	MS AC 203	11.9	13.5	MS AC 220	58.7	63.5
	MS AC 204	13.5	14.3	MS AC 221	63.5	68.3
	MS AC 205	14.3	16.7	MS AC 222	68.3	73.0
	MS AC 206	15.9	18.3	MS AC 223	73.0	79.4
	MS AC 207	18.3	20.6	MS AC 224	76.2	82.6
	MS AC 208	19.0	21.4	MS AC 225	82.6	88.1
	MS AC 209	21.4	25.4	MS AC 226	88.1	95.2
P b	MS AC 210	25.4	27.8	MS AC 227	95.2	100.0
	MS AC 211	27.0	30.2	MS AC 228	100.0	106.4
RAS S	MS AC 212	30.2	33.3	MS AC 229	106.4	111.1
	MS AC 213	31.8	35.9	MS AC 230	111.1	120.7
	MS AC 214	34.9	39.7	MS AC 231	120.7	129.4
	MS AC 215	39.7	42.9	MS AC 232	129.4	138.1
	MS AC 216	42.9	46.8	MS AC 233	138.1	149.2
	MS AC 217	46.8	50.8	MS AC 234	149.2	161.9
SADDLE CLAMPS	Part Number	Minimum Bore	Dimension 'A		'B'	
		(mm)	(mm)	(mm)		
Hot dipped galvanized finish.		. –	.			
	MS BC 01	15	21	30		
\sim	MS BC 02	20	27	30		
	MS BC 03	25	34	30		
	MS BC 04	32	43	30		
	MS BC 05	40	48	30		
NB	MS BC 06	50	60	30		
	MS BC 07	65	76	40		
< Fa /	MS BC 08	80	89	40		
\sim $>$	MS BC 09	100	114	40		
		125	140	40		
	MS BC 10 MS BC 11	150	168	40		

LIGHTING FITTINGS

SNAP-IN CLOSURE STRIP - PVC Supplied in 3m lengths

END CAPS - PVC

Wire Basket System

Boltings & Fasteners

GRP/FRP System

Wire Basket Tray

"Safety edge" New concept Speed-Lock-coupler (boltless) Easy to handle On-site fabrication of fittings Clip together system Flexibility around obstacles Wide range of sizes and profiles High side walls for extra cabling capacity Wide range of fixings for walls, ceilings and floors Easy to adapt and extend High strength to weight ratio Easy routing of cables in and out Improved air circulation Dust-free : does not retain the dust

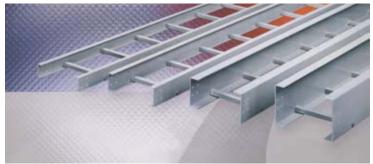
Finishes: HDG (pre-galvanised to SS304 or SS316) Epoxy coated

Model	Н	W	L	Load Kg/sqm		
				1.5m span	2m span	
WMB 30	30	50	3000	7	3	
	30	100	3000	10	4	
	30	150	3000	15	5	
	30	200	3000	20	7	
	30	300	3000	25	12.5	

Model	H W		L	Load Kg/sqm		
				1.5m span	2m span	
WMB 60	60	50	3000	20	8	
	60	100	3000	29	12	
	60	150	3000	43	18	
	60	200	3000	43	18	
	60	300	3000	54	22	
	60	400	3000	105	50	
	60	500	3000	140	64	

Safety factor - 2.5 Definition 1/200

Bolting Accessories



Corrosion Resistant Composite Technology

• No Earth-Bonding required • Easy Installation • Maintenance Free • Corrosion Resistant

GRP Heavy Duty Cable Tray & Duct

and Harsh Environment

GRP Cable Ladder

- The Pultrusion Process
- High load carrying to NEMA FG-1
- Available in Polyester, Acrylic and **Phenolic Resins**
- · Modar Resin is available on special order

CLASS 1 (MODAR) & CLASS 2 (POLYESTER) Resins have been subjected to the following tests:

- Flame Spread Test to BS746 Part 7
- Flame Propagation Test to BS 746 Part 6
- Smoke Emission Test to BS6853
- Fire Resistance Test to IEC331
- Best for use in Corrosive. High Temperature Flame Test to IEC332 Part 3 (withstand 1000°C temperature for 3 hours)

SBN INDUSTRIES SDN BHD

HEADQUARTERS (HQ) 6, Jalan Penaga, Kawasan Perindustrian Kota Putri, 81750 Masai, Johor, West Malaysia Tel +60 7 388 2521 Fax +60 7 388 2523 Email sales@sbnbiz.com Web www.sbnbiz.com

KL OFFICE

Unit 13A-2, Pangsapuri Servis, (Suite) Binjai 8, No. 2, Lorong Binjai, 50450 Kuala Lumpur. Tel +60 3 2181 6341 / 6342 Fax +60 3 2181 6335 Email sbnkl@sbnbiz.com

TERENGGANU OFFICE K431, Taman Kemaman, 24000 Chukai Kemaman, Terengganu. Tel +60 9 859 7600 Fax +60 9 859 7701 Email sbnkmm@sbnbiz.com

SARAWAK OFFICE Lot 1167 Blok 10 KBLD Lutong Baru Shophouse PO Box 1075, 98008 Miri, Sarawak. Tel +60 85 651 600 Fax +60 85 655 604 Email sbnmiri@sbnbiz.com

SABAH OFFICE Lot F-4-28, 4th Floor, Block F, Tanjung Aru Plaza, 88100 Kota Kinabalu, Sabah, Malaysia. Tel +60 88 211 509 Fax +60 88 211 509 Email ian@sbnbiz.com

Cable Support Systems

Fluorocarbon Coated Bolts & Nuts

Cathodic Protection Products & Services

Hydraulic Tensioning Tool/Torque Wrench Rental and Contract Services

Cathodic Protection Monitoring Equipment

Splashzone Wrapping System

and Monolithic Joints